Heinert et al.01.03.2010 Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,

Slides:



Advertisements
Similar presentations
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Advertisements

Nawrodt 10/07 #1/21 R. Nawrodt, A. Schröter, C. Schwarz, D. Heinert, M. Hudl, W. Vodel, A. Tünnermann, P. Seidel STREGA Meeting Tübingen 10/
Harald Lück, AEI Hannover 1 GWADW- May, 10-15, 2009 EU contract #
Interpretation of bulk material measurements Anja Schröter Institute of Solid State Physics – Low Temperature Physics Friedrich-Schiller-University.
Dublin/July'04 1 BLTS interferometers: Big, Low-temperature Transparent Silicon Interferometers Warren Johnson Louisiana State University LIGO-G Z.
Nawrodt 05/2010 Thermal noise in the monolithic final stage Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,
Substrate mechanical loss studies Sheila Rowan (Stanford University) for: LIGO Laboratory (Caltech, MIT, LLO, LHO) LSC Partners (University of Glasgow,
Alban REMILLIEUX3 rd ILIAS-GW Annual General Meeting. London, October 26 th -27 th, New coatings on new substrates for low mechanical loss mirrors.
Composite mirror suspensions development status Riccardo DeSalvo For the ELiTES R&D group WP1 & 2 JGW-xxxxxx.
STREGA WP1/M1 mirror substrates GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
A. Bunkowski Nano-structured Optics for GW Detectors 1 A.Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel in collaboration with T.
Nawrodt 05/2010 Thermal noise and material issues for ET Ronny Nawrodt Matt Abernathy, Nicola Beveridge, Alan Cumming, Liam Cunningham, Giles Hammond,
Overview of coatings research and recent results at the University of Glasgow M. Abernathy, I. Martin, R. Bassiri, E. Chalkley, R. Nawrodt, M.M. Fejer,
Thermal noise from optical coatings Gregory Harry Massachusetts Institute of Technology - on behalf of the LIGO Science Collaboration - 25 July
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
Nawrodt 23/03/2011 Experimental Approaches for the Einstein Telescope Ronny Nawrodt on behalf of the Einstein Telescope Science Team and the ET DS Writing.
Absorption in bulk crystalline silicon and in the crystal surfaces Aleksandr Khalaidovski 1 Alexander Khalaidovski 1, Jessica Steinlechner 2, Roman Schnabel.
DFG-NSF Astrophysics Workshop Jun 2007 G Z 1 Optics for Interferometers for Ground-based Detectors David Reitze Physics Department University.
Advanced interferometers for astronomical observations Lee Samuel Finn Center for Gravitational Wave Physics, Penn State.
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, H. Armandula 3, R. Bassiri 1, E. Chalkley 1 C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
1 Kazuhiro Yamamoto Institute for Cosmic Ray Research, the University of Tokyo Cryogenic mirrors: the state of the art in interferometeric gravitational.
FSU Jena Nawrodt 10/06 #1/16 Ronny Nawrodt ILIAS/STREGA Annual Meeting London, 27 October 2006 Friedrich-Schiller-Universität Jena, Germany Cryogenic Q-measurements.
Francesco Cottone INFN & Physics Departments of Perugia, Pisa, Florence (Collaboration Work under VIRGO Project) Thermomechanical properties of silicon.
Friedrich-Schiller-Universität Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz19 th May GWADW Kyoto 1 Losses in.
ILIAS - GWA N5 - Strega JRA3 General Meeting Orsay - November 5th-6th, 2004 M1 Activities.
Virgo-Material “macro” group M.Punturo. VIRGO-MAT2 VIRGO-MAT components Virgo-MAT is composed by three INFN groups –Firenze/Urbino M.Lorenzini, G.Losurdo,
Parametric Instabilities In Advanced Laser Interferometer Gravitational Wave Detectors Li Ju Chunnong Zhao Jerome Degallaix Slavomir Gras David Blair.
1 Kazuhiro Yamamoto Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover.
Thermoelastic dissipation in inhomogeneous media: loss measurements and thermal noise in coated test masses Sheila Rowan, Marty Fejer and LSC Coating collaboration.
Janyce Franc-Kyoto-GWADW1 Simulation and research for the future ET mirrors Janyce Franc, Nazario Morgado, Raffaele Flaminio Laboratoire des Matériaux.
Janyce Franc Effect of Laguerre Gauss modes on thermal noise Janyce Franc, Raffaele Flaminio, Nazario Morgado, Simon Chelkowski, Andreas Freise,
Thermal Noise in Thin Silicon Structures
Sapphire for the LCGT project Eiichi Hirose ICRR, University of Tokyo Kyohei Watanabe, Norikatsu Mio PSC, University of Tokyo GT Advanced Technology, Sep.
Cryogenic Xylophone Kyoto May Kentaro Somiya Waseda Inst. for Adv. Study Collaboration work with S.Hild, K.Kokeyama, H.Mueller-Ebhardt, R.Nawrodt,
STREGA & ET - 4th ILIAS-GW general meeting 1 STREGA legacy for ET Michele Punturo INFN Perugia.
G R LIGO’s Ultimate Astrophysical Reach Eric Black LIGO Seminar April 20, 2004 Ivan Grudinin, Akira Villar, Kenneth G. Libbrecht.
17/05/2010A. Rocchi - GWADW Kyoto2 Thermal effects: a brief introduction  In TM, optical power predominantly absorbed by the HR coating and converted.
Aspen Flat Beam Profile to Depress Thermal Noise J.Agresti, R. DeSalvo LIGO-G Z.
Mechanical Loss and Thermal Conductivity of Materials for KAGRA and ET
Optics related research for interferometric gravitational wave detectors S. Rowan for the Optics working group of the LIGO Scientific Collaboration SUPA,
LIGO-G Z Silicon as a low thermal noise test mass material S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University P. Sneddon, D. Crooks,
LIGO-G R 1 Gregory Harry and COC Working Group Massachusetts Institute of Technology - Technical Plenary Session - March 17-20, 2003 LSC Meeting.
LIGO-G Z 1 Report of the Optics Working Group to the LSC David Reitze University of Florida March 20, 2003.
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz 15 th September Genoa 1 Investigation.
1/16 Nawrodt, Genoa 09/2009 An overview on ET-WP2 activities in Glasgow R. Nawrodt, A. Cumming, W. Cunningham, J. Hough, I. Martin, S. Reid, S. Rowan ET-WP2.
WP2-WP3 Joint Meeting - Jena - March 1-3, Several different mechanisms contribute to the thermal noise of the mirror: Brownian (BR)(substrate, coating)
Studies of materials to reduce coating thermal noise K. Craig 1, I.W. Martin 1, S. Reid 2, M. Abernathy 1, R. Bassiri 1,4, K. Borisenko 3, A. Cumming 1,
The coating thermal noise R&D for the 3rd generation: a multitechnique investigation E. Cesarini 1,2), M.Prato 3), M. Lorenzini 2) 1)Università di Urbino.
Low temperature dissipation in coating materials S. Reid 1, I. Martin 1, E. Chalkley 1, H. Armandula 3, R. Bassiri 1, C. Comtet 4, M.M. Fejer 5, A. Gretarsson.
Measurement of coating mechanical loss Junko Katayama, K.Craig, K.Yamamoto, M.Ohashi ICRR 0.
Ronny Nawrodt 1st ELiTES General Meeting Tokyo 04/10/2012 Silicon Surfaces – Silicon Loss and Silicon Treatments –
Department of Physics & Astronomy Institute for Gravitational Research Scottish Universities Physics Alliance Brownian thermal noise associated with attachments.
Friedrich-Schiller-University Jena Institute of Solid State Physics – Low Temperature Physics Christian Schwarz Current status of the bulk.
1 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Waveguide grating mirrors Insights from the inside Future Past Present Daniel Friedrich, Michael Britzger,
Material Downselect Rationale and Directions Gregory Harry LIGO/MIT Kavli Institute for Astrophysics and Space Technology On behalf of downselect working.
Loss measurements in bulk materials
Overview of the 20K configuration
Mechanical Loss in Silica substrates
Studies of some properties of Hydroxide-Catalysis Bonds
Thermal noise calculations for cryogenic optics
Mirror thermal noises and its implications on the mirror design
Interferometric speed meter as a low-frequency gravitational-wave detector Helge Müller-Ebhardt Max-Planck-Institut für Gravitationsphysik (AEI) and Leibniz.
S. Rowan, M. Fejer, E. Gustafson, R. Route, G. Zeltzer
Mechanical Loss Measurements of Coated Substrates for Gravitational Wave Interferometry Thaddeus Baringer1, Gregory Harry1, Jonathan Newport1, Hannah Faire1,
Thermal noise reduction through LG modes
Overview of Advanced LIGO Coating Status
Ponderomotive Squeezing Quantum Measurement Group
LIGO Scientific Collaboration
Main Efforts of the Core Optics WG
Presentation transcript:

Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert, R. Nawrodt, C. Schwarz, P. Seidel Institute of Solid State Physics, University of Jena Kyoto, 18 th May 2010

Heinert et al Properties of candidate materials for cryogenic mirrors 2 I current detector parameters outline II improvement to 3rd generation challenges (thermal lensing, cooling) sensitivity possibilities of increasing sensitivity 2nd generation detectors way to 3rd generation noise sources substrate noise contributions III conclusion  impact on detector‘s working point  estimate resulting noise for ET

Heinert et al Properties of candidate materials for cryogenic mirrors 3 a) increase laser power b) decrease thermal noise (substrate and coating) Frequenz in Hz Planned detector sensitivities steps for 2nd to 3rd generation: 2nd generation detectors way to 3rd generation planned sensitivities thermal noise calculation thermal noise spectrum

Heinert et al Properties of candidate materials for cryogenic mirrors 4 Thermal noise processes Brownian noise Thermoelastic noise substratecoating [Braginsky 1999] [Liu, Thorne 2000] [Braginsky, Fejer et al. 2004] [Harry et al. 2002] 2nd generation detectors way to 3rd generation planned sensitivities thermal noise calculation thermal noise spectrum general result

Heinert et al Properties of candidate materials for cryogenic mirrors 5 Thermal noise for AdvLIGO thermal noise with minor influence on total sensitivity 2nd generation detectors way to 3rd generation planned sensitivities thermal noise calculation thermal noise spectrum [R. Adhikari]

Heinert et al Properties of candidate materials for cryogenic mirrors 6 Task 1: Reducing photon shot noise requires increase of laser power in the interferometer  increase of optically absorbed power in the test mass change of refractive index  variation of wave front  effect of thermal lensing of transmissive parts fused silica with high  optical instability of the interferometer strategies to solve the problem decreaseincrease thermal conductivity 2nd generation detectors way to 3rd generation thermal lensing TE noise of crystals silicon vs. sapphire

Heinert et al Properties of candidate materials for cryogenic mirrors 7 Why not just cool fused silica test masses? But: remember thermal noise expressions Decrease of thermal lensing I: decrease of beta  no thermal lensing fused silica show increasing loss for decreasing temperature  this even overcompensates benefit due to cooling [Nawrodt 2008] explanation: - defect energy distribution in amorphous solids (jumps of oxygen in the structure) 2nd generation detectors way to 3rd generation thermal lensing TE noise of crystals silicon vs. sapphire

Heinert et al Properties of candidate materials for cryogenic mirrors 8  crystalline samples (candidates: sapphire, silicon) Decrease of thermal lensing II: increasing thermal conductivity general temperature behaviour of thermal conductivity temperature 3 zones: a) phonon population b) defects c) phonon collisions 20…40 K  defects limit global maximum of thermal conductivity defects are - surface of the sample - lattice defects a) b) c) 2nd generation detectors way to 3rd generation thermal lensing TE noise of crystals silicon vs. sapphire

Heinert et al Properties of candidate materials for cryogenic mirrors 9 [Touloukian] Assumed numbers for thermal conductivity 2nd generation detectors way to 3rd generation thermal lensing TE noise of crystals silicon vs. sapphire our values (pure silicon with low defects)

Heinert et al Properties of candidate materials for cryogenic mirrors 10 change in thermal conductivity changes position of maximum for TE losses alpha is high in crystalline solids Consequences for thermoelastic noise Zener‘s model for thermoelastic damping  change of thermoelastic noise via FDT h 2nd generation detectors way to 3rd generation thermal lensing TE noise of crystals silicon vs. sapphire h=30 cm [Zener, 1937]

Heinert et al Properties of candidate materials for cryogenic mirrors 11 restriction of the detector‘s working point temperature, ideal: T=300 KT=20 K  coating Brownian dominates noise spectrum for low temperatures  hope for alternative reflection concepts (gratings, Khalili etalons, …) Rigorous noise calculation for silicon (Ø 50 cm x 30 cm, 111) 2nd generation detectors way to 3rd generation thermal lensing TE noise of crystals silicon vs. sapphire

Heinert et al Properties of candidate materials for cryogenic mirrors 12 Rigorous noise calculation for sapphire (Ø 50 cm x 30 cm, zcut) T=300 K T=20 K 2nd generation detectors way to 3rd generation thermal lensing TE noise of crystals silicon vs. sapphire bulk thermoelastic in the same order as coating Brownian for 20 K

Heinert et al Properties of candidate materials for cryogenic mirrors 13 Silicon vs. Sapphire monocrystalline silicon available in diameters up to 50 cm within the next 5 years change of wavelength to 1550 nm will increase Brownian coating noise moderately, but also decreases stray light by factor 4.5  silicon is presently the best choice for substrate material thermal noise requirements industrial background SiliconSapphire hardness  machinability optical absorption at 1064 nm good bad good bad good badmedium 2nd generation detectors way to 3rd generation thermal lensing TE noise of crystals silicon vs. sapphire

Heinert et al Properties of candidate materials for cryogenic mirrors 14 measurement for crystalline silicon (Ø 76.2 mm x 75 mm) Temperature dependene of mechanical loss of silicon  silicon maintains low losses at low temperatures  low Brownian noise further information: see talk of Ch. Schwarz 2nd generation detectors way to 3rd generation thermal lensing TE noise of crystals silicon vs. sapphire

Heinert et al Properties of candidate materials for cryogenic mirrors 15 Conclusions no fused silica due to high Brownian noise silicon as main candidate for substrate material with - availability of large geometries - big industry behind to achieve 3rd generation sensitivity we have to go cryogenic coating Brownian noise dominates below ca. 25 K  cool detector to 20 K due to high thermoelastic noise  change wavelength to 1550nm due to optical absorption achievable noise at 20 K: 2nd generation detectors way to 3rd generation

Heinert et al Properties of candidate materials for cryogenic mirrors 16 Rigorous noise calculation for silicon (Ø 50 cm x 30 cm, 111), T=20 K

Heinert et al Properties of candidate materials for cryogenic mirrors 17 Thermal noise opponents: silicon at 20 k vs. fused silica at 300 K silicon fused silica