Genesis /ALICE Benchmarking Igor Zagorodnov Beam Dynamics Group Meeting 17.03.08.

Slides:



Advertisements
Similar presentations
Compression Scenarios for the European XFEL Charge and Bunch Length Scope Igor Zagorodnov 1st Meeting of the European XFEL Accelerator Consortium DESY,
Advertisements

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch Rui Li, J. Bisognano, R. Legg, and R. Bosch.
Lecture 4. High-gain FELs X-Ray Free Electron Lasers Igor Zagorodnov Deutsches Elektronen Synchrotron TU Darmstadt, Fachbereich May 2014.
Paul Emma SLAC January 14, 2002 BERLIN CSR Benchmark Test-Case Results CSR Workshop.
The echo-enabled harmonic generation (EEHG) options for FLASH II Haixiao Deng, Winfried Decking, Bart Faatz FEL division, Shanghai Institute of Applied.
Adnan Doyuran a, Joel England a, Chan Joshi b, Pietro Musumeci a, James Rosenzweig a, Sergei Tochitsky b, Gil Travish a, Oliver Williams a a UCLA/Particle.
FLASH Simulations SASE Killer Igor Zagorodnov S2E Meeting DESY 24 June 2014.
Code parameters optimization & DTL Tank 1 error studies Maud Baylac, Emmanuel Froidefond Presented by JM De Conto LPSC-Grenoble HIPPI yearly meeting, Oxford,
Longitudinal Impedance Budget from LINAC to SASE2 Igor Zagorodnov Beam Dynamics Group Meeting
Stephen Benson U.S. Particle Accelerator School January 17, 2011 The FEL as a Diagnostic* * This work was supported by U.S. DOE Contract No. DE-AC05-84-ER40150,
Performance Analysis Using Genesis 1.3 Sven Reiche LCLS Undulator Parameter Workshop Argonne National Laboratory 10/24/03.
1 Daniel Ratner 1 Gain Length and Taper August, 2009 FEL Gain length and Taper Measurements at LCLS D. Ratner A. Brachmann, F.J.
ATF2 FB/FF layout Javier Resta Lopez (JAI, Oxford University) for the FONT project group FONT meeting January 11, 2007.
Z. Huang LCLS FAC April Effect of AC RW Wake on SASE - Analytical Treatment Z. Huang, G. Stupakov see SLAC-PUB-10863, to.
Simulations of Neutralized Drift Compression D. R. Welch, D. V. Rose Mission Research Corporation Albuquerque, NM S. S. Yu Lawrence Berkeley National.
GINGER Results for the NEW LCLS Undulator Configuration William M. Fawley Lawrence Berkeley National Laboratory Presented to LCLS Undulator Parameter Workshop.
1 Chris Rogers MICE Collaboration Meeting 11th Feb 2005 Tracking and Cooling performance of G4MICE.
SIMULATION PROGRESS AND PLANS AT ROSTOCK/DESY Aleksandar Markovic ECL2, CERN, March 1, 2007 Gisela Pöplau.
Modelling of the ALICE Injector Julian McKenzie ASTeC STFC Daresbury Laboratory IOP Particle Accelerators and Beams Group Status and Challenges of Simulation.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
FEL simulation code FAST Free-Electron Laser at the TESLA Test Facility Generic name FAST stands for a set of codes for ``full physics'' analysis of FEL.
Emittance Growth from Elliptical Beams and Offset Collision at LHC and LRBB at RHIC Ji Qiang US LARP Workshop, Berkeley, April 26-28, 2006.
Beam-Beam Simulations for RHIC and LHC J. Qiang, LBNL Mini-Workshop on Beam-Beam Compensation July 2-4, 2007, SLAC, Menlo Park, California.
ASTRA Injector Setup 2012 Julian McKenzie 17/02/2012.
S2E in LCLS Linac M. Borland, Lyncean Technologies, P. Emma, C. Limborg, SLAC.
Forward-Scan Sonar Tomographic Reconstruction PHD Filter Multiple Target Tracking Bayesian Multiple Target Tracking in Forward Scan Sonar.
S. Spampinati, J.Wu, T.Raubenhaimer Future light source March, 2012 Simulations for the HXRSS experiment with the 40 pC beam.
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
A 3D tracking algorithm for bunches in beam pipes with elliptical cross-section and a concept for simulation of the interaction with an e-cloud Aleksandar.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Simulation of Microbunching Instability in LCLS with Laser-Heater Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory.
Beam Modulation due to Longitudinal Space Charge Zhirong Huang, SLAC Berlin S2E Workshop 8/18/2003.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
M.E. Biagini, M. Boscolo, T. Demma (INFN-LNF) A. Chao, M.T.F. Pivi (SLAC). Status of Multi-particle simulation of INFN.
Optimization of Compact X-ray Free-electron Lasers Sven Reiche May 27 th 2011.
Physics of electron cloud build up Principle of the multi-bunch multipacting. No need to be on resonance, wide ranges of parameters allow for the electron.
IMPACT-T - A 3D Parallel Beam Dynamics Code for Modeling High Brightness Beams in Photo-Injectors Ji Qiang Lawrence Berkeley National Laboratory Work performed.
B. FEL theory. B. FEL theory B.1 Overview B.2 Low-gain FEL theory B.3 High-gain FEL theory.
X-Ray FEL Simulation: Beam Modeling William M. Fawley Center For Beam Physics Lawrence Berkeley National Laboratory ICFA 2003 Workshop.
UCLA Positron Production Experiments at SABER Presented by Devon Johnson 3/15/06.
GWENAEL FUBIANI L’OASIS GROUP, LBNL 6D Space charge estimates for dense electron bunches in vacuum W.P. LEEMANS, E. ESAREY, B.A. SHADWICK, J. QIANG, G.
3D codes: TraFiC4 and CSRtrack Torsten Limberg DESY Zeuthen 2003.
Change in Program Tuesday Morning Review of 2002 CSR Workshop (T. Limberg, 20 min) CSR calculation Models (M. Dohlus, 40 min) The 3D Codes TraFiC4 and.
NON-WIGGLER-AVERAGED START-TO-END SIMULATIONS OF HIGH-GAIN FREE- ELECTRON LASERS H.P. Freund Science Applications International Corp. McLean, Virginia.
D. Lipka, V. Vogel, DESY Hamburg, Germany, Oct Optimization cathode design with gun5 D. Lipka, V. Vogel, DESY Hamburg, Germany.
Design Considerations of table-top FELs laser-plasma accelerators principal possibility of table-top FELs possible VUV and X-ray scenarios new experimental.
S2E (start-to-end) Simulations at DESY T. Limberg TESLA Collaboration Meeting in Frascati, May 2003.
Transverse Gradient Undulator and its applications to Plasma-Accelerator Based FELs Zhirong Huang (SLAC) Introduction TGU concept, theory, technology Soft.
Beam-beam Simulation at eRHIC Yue Hao Collider-Accelerator Department Brookhaven National Laboratory July 29, 2010 EIC Meeting at The Catholic University.
Computational Needs for the XFEL Martin Dohlus DESY, Hamburg.
Prospects for generating high brightness and low energy spread electron beams through self-injection schemes Xinlu Xu*, Fei Li, Peicheng Yu, Wei Lu, Warren.
Pushing the space charge limit in the CERN LHC injectors H. Bartosik for the CERN space charge team with contributions from S. Gilardoni, A. Huschauer,
Ultra-short electron bunches by Velocity Bunching as required for Plasma Wave Acceleration Alberto Bacci (Sparc Group, infn Milano) EAAC2013, 3-7 June,
What did we learn from TTF1 FEL? P. Castro (DESY).
E. Schneidmiller and M. Yurkov FEL Seminar, DESY April 26, 2016 Reverse undulator tapering for polarization control at X-ray FELs.
Simulations of X-ray production for different undulator options 19 th of March 2015 Juergen Pfingstner.
Some Simulations for the Proposed Hard X-Ray Self- Seeding on LCLS J. Wu J. Wu et al. Feb. 25, 2011.
XFEL-O Simulation Methods with the GINGER Code William Fawley Ryan Lindberg K-J Kim Yuri Shyvd’ko LBNL & ANL.
Proton-driven plasma wakefield acceleration in hollow plasma
EUPRAXIA-PISA JUNE 2016 e-Beam-Laser
Beam-beam effects in eRHIC and MeRHIC
Sven Reiche UCLA ICFA-Workshop - Sardinia 07/02
Space-charge Effects for a KV-Beam Jeffrey Eldred
Review of Application to SASE-FELs
Beam-Beam Interaction in Linac-Ring Colliders
Z. Huang LCLS Lehman Review May 14, 2009
Gain Computation Sven Reiche, UCLA April 24, 2002
2. Crosschecking computer codes for AWAKE
ALICE is a Lasing Investigation Co- dE
Presentation transcript:

Genesis /ALICE Benchmarking Igor Zagorodnov Beam Dynamics Group Meeting

Genesis 1.3 (S.Reiche et al) ALICE only 3D 3D Cartesian field solver (ADI) Runge-Kutta integrator Dirichlet boundary conditions transverse motion many other physics parallel (MPI) 1D/2D/3D 3D azimuthal field solver (Neumann) Leap-Frog integrator Perfectly Matched Layer transverse motion simplified model parallel (MPI) tested by me on the examples from the book of SSY (~Saldin et al, 2000 „The Physics …“,)

2.5 MeV

Genesis vs. ALICE / Energy Spread (round Gaussian beam, Gaussian energy spread, parallel motion only) ALICE Genesis W = 4 kW SASE 2 parameters

How to simulate emmitance with laminar particle motion only? -E. Saldin et al, TESLA-FEL (1995); S.Reiche PhD Thesis (1999). - E. Saldin et al, The Physics of Free Electron Lasers (2000) - E. Saldin et al, DESY (2005)

Genesis vs. ALICE / Emmitance (round Gaussian beam, Gaussian energy spread) ALICE (laminar) Genesis

ALICE (laminar) Genesis Field growth rate Genesis vs. ALICE (emittance parameter fit)

ALICE (laminar) Genesis Detuning corresponds to maximal growth rate in linear regime Genesis vs. ALICE with laminar motion The transverse motion has to be implemented in ALICE

Genesis vs. ALICE with transverse motion P0 = 4 kW 19% Genesis (N=6e4) Genesis (N=3e4) Alice (N=6e4) Alice (N=3e4) The difference in saturation length is 7 %. The difference in power gain is 19 %. The difference does not reduce with changing of the discrete model parameters ?!. I=5KA N ~10 400

GINGER/GENESIS results for “0-order” 200- pC case Observations: Again, GENESIS shows slightly longer gain length, 10-m later saturation but 15% higher power Again, GINGER shows deeper post- saturation power oscillation Little sensitivity (2 m, 7%) in GINGER results to 8X particle number increase Possible reasons for differences:  bugs  slight differences in initial e-beam properties (e.g. mismatch)  grid effects (e.g. outer boundary)  ??? William M. Fawley, ICFA 2003 Workshop on Start-to-End Numerical Simulations of X-RAY FEL’s

Bridsall C.K., Langdon A.B., Plasma Physics via Computer Simulations, 1991 Dawson J.M, Particle simulation of Plasmas // Reviews of Modern Physics, 1983 About advantages of the „quiet start“ see, for example, in

N trans x,%x,% y,%y,%  px, %  py, % Genesis ASTRA Alice Properties of the Normal macroparticle distribution

N trans RxyRpxpyRxpyRypx Genesis 75008e-32e-25e-38e e-31e-21e-33e-3 ASTRA 75004e-37e-35e e-34e-36e-34e-3 Alice 75001e-32e-38e-42e e-41e-35e-48e-4 Properties of the Normal macroparticle distribution

ALICE Genesis clustering Quiet start ? What is the reason? ASTRA

The polar form of Box-Muller algorithm (in Genesis) maps the „quiet“ uniform distribution in a clustered normal distribution. Uniform Normal Quiet start ?

ALICE Genesis Quiet start ? clustering

ALICE Genesis Quiet start ? clustering

ASTRA

Modified Genesis vs. ALICE with transverse motion P0 = 4000 Watt Genesis (modified) (N=6e4) Alice (N=6e4)

The transformation used in ALICE It transforms the uniform distribution X i (0,1) to the normal distribution Y i (  ). This transformation does not destroy the „quiet start“. It uses the straightforward transformation by inverse error function

Convergence Genesis Genesis (modified) ALICE Genesis Genesis (modified) ALICE Genesis: Hammersley and Box-Mueller Genesis (modified):Hammersley and the inverse error function ALICE:Sobol and the inverse error function I=5KA N ~ at saturation