Inverses By: Jeffrey Bivin Lake Zurich High School Last Updated: November 17, 2005
Definition Inverse Relation A relation obtained by switching the coordinates of each ordered pair. Relation { (1, 4), (4, 6), (-3, 2), (-4, -2), ( -1, 5), (0, 1) } Inverse Relation { (4, 1), (6, 4), (2, -3), (-2, -4), (5, -1), (1, 0) } Jeff Bivin -- LZHS
Definition Inverse Relation A relation obtained by switching the coordinates of each ordered pair. Jeff Bivin -- LZHS
INVERSE RELATIONS Jeff Bivin -- LZHS
Relation { (1, 4), (4, 6), (-3, 2), (-4, -2), (-1,5), (0, 1) } Inverse { (4, 1), (6, 4), (2, -3), (-2, -4), (5, -1), (1, 0) } Jeff Bivin -- LZHS
Inverse {(-6,-4), (4,1), (6, 2), (0,-1), (3,-4), (-2,4)} Relation {(-4,-6), (1,4), (2, 6), (-1,0), (-4,3), (4,-2)} Jeff Bivin -- LZHS
f(x)= x 2 Jeff Bivin -- LZHS
f(x)= x 2 Jeff Bivin -- LZHS
G(x) Jeff Bivin -- LZHS
G(x) Jeff Bivin -- LZHS
G(x) Jeff Bivin -- LZHS
G(x) Jeff Bivin -- LZHS
f(x)= x 3 Jeff Bivin -- LZHS
Find the inverse Jeff Bivin -- LZHS
Find the inverse Jeff Bivin -- LZHS
Find the inverse Jeff Bivin -- LZHS
Inverse functions Two functions, f(x) and g(x), are inverses of each other if and only if: f(g(x)) = x and g(f(x)) = x Jeff Bivin -- LZHS
Are these functions inverses? Jeff Bivin -- LZHS
Are these functions inverses? Jeff Bivin -- LZHS