Highly transparent solution processed In-Ga-Zn oxide thin films 指導教授 : 林克默博士 學生 : 董祐成 日期 :99/08/16 Y. Wang S. W. Liu X. W. Sun J. L. Zhao G. K. L. Goh.

Slides:



Advertisements
Similar presentations
Display Systems and photosensors (Part 2)
Advertisements

Structural Properties of Electron Beam Deposited CIGS Thin Films Author 1, Author 2, Author 3, Author 4 a Department of Electronics, Erode Arts College,
Chapter 7b Fabrication of Solar Cell. Different kind of methods for growth of silicon crystal.
Solution processible Inorganic Nanocrystal based Thin-film Transistor Hongki Kang EE235 April
Chemical Nanoparticle Deposition of Oxide Nanostructured Thin Films 6. Conclusions 2. Experimental Setup 1. Abstract We have developed a novel approach.
Nanocrystalline Super-Ionic Conductors for Solid Oxide Fuel Cells Daniel Strickland (Seattle University) University of California – Irvine Material Science.
MSE-630 Dopant Diffusion Topics: Doping methods Resistivity and Resistivity/square Dopant Diffusion Calculations -Gaussian solutions -Error function solutions.
Nucleation of gold nanoparticles on graphene from Au 144 molecular precursors Andrei Venter 1, Mahdi Hesari 2, M. Shafiq Ahmed ­1, Reg Bauld 1, Mark S.
Preparation of Fluorine-doped Tin Oxide by a Spray Pyrolysis Deposition and Its Application to the Fabrication of Dye-sensitized Solar Cell Module S. Kaneko,
Comparison of Field Emission Behaviors of Graphite, Vitreous Carbon and Diamond Powders S. H. Lee, K. R. Lee, K. Y. Eun Thin Film Technology Research Center,
PREPARATION OF ZnO NANOWIRES BY ELECTROCHEMICAL DEPOSITION
Zn x Cd 1-x S thin films were characterized to obtain high quality films deposited by RF magnetron sputtering system. This is the first time report of.
1 Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films Tae Young Ma, Dae Keun Shim Department of Electrical Engineering.
Zinc oxide films prepared by sol-gel spin coating 指導老師:林克默 學 生:吳仕賢 報告日期: Y. Natsume, H. Sakata, Thin Solid Films 372 (2000) 30. Department of.
1 先進奈米科技暨 應用光電實驗室 Southern Taiwan University. Silicon nano-crystalline structures fabricated by a sequential plasma hydrogenation and annealing technique.
Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence 指導老師 : 林克默 博士 黃文勇 博士 學生 : 郭怡彣.
Influence of oxygen content on the 1.54 μm luminescenceof Er-doped amorphous SiO x thin films G.WoraAdeola,H.Rinnert *, M.Vergnat LaboratoiredePhysiquedesMate´riaux.
Chin-Ching Lina, Mei-Ching Chianga, Yu-Wei Chenb
Influences of preferred orientation growth on electrical properties of ZnO:Al films by sol–gel method 教授 : 林克默博士 學生 : 董祐成 日期 :2010/10/18 Keh-moh Lin Hsin-Cheng.
指導教授:劉致為 博士 學生:魏潔瑩 台灣大學電子工程學研究所
Keh-moh Lin ∗, Paijay Tsai Department of Mechanical Engineering, Southern Taiwan University of Technology, No. 1, Nantai St., Yung-Kang City, Tainan 710,
指導老師:林克默 博士 學 生:楊顯奕 報告日期: Outline 1 Introduction 2 Experimental procedure 3 Results and discussion 4 Conclusion.
版權所有 翻印必究 日 期: 指導老師:林克默 博士 學 生:謝竹富 2015/10/281 STUT 太陽能材料與模組實驗室.
APPLICATIONS OF THERMOACOUSTIC TECHNIQUES FOR THERMAL, OPTICAL AND MECHANICAL CHARACTERIZATION OF MATERIALS, STRUCTURES AND DEVICES Mirosław Maliński.
指導教授:林克默 學 生:陳立偉 Introduction Recently,the interest in up-conversion emission has been increased due to the needs for all-solid compact.
The deposition of amorphous indium zinc oxide (IZO) thin films on glass substrates with n-type carrier concentrations between and 3x10 20 cm -3 by.
1 指導老師:林克默 老師 學 生:吳仕賢 From : V. Khranovskyy, U. Grossner, V. Lazorenko, G. Lashkarev, B.G. Svensson, R. Yakimova, “Conductivity increase of ZnO:Ga films.
1 Nano-aluminum-induced crystallization of amorphous silicon 指導教授:管 鴻 學 生:郭豐榮 學 號: M98L0213.
指導教授:王聖璋 博士 (Pro.S-C Wang) 學生 : 黃伯嘉 (Bo-Jia Huang) 2015/11/11 Temperature effects on the growth of SnS nanosheet structure using thermal decomposition.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #4. Ion Implantation  Introduction  Ion Implantation Process  Advantages Compared to Diffusion  Disadvantages.
Directional Etching Formation of Single-Crystalline Branched Nanostructures: A Case of Six-Horn-like Manganese Oxide Xi-Guang Han, Ming-Shang Jin, Qin.
日 期: 指導老師:林克默、黃文勇 學 生:陳 立 偉 1. Outline 1.Introduction 2.Experimental 3.Result and Discussion 4.Conclusion 2.
指導教授:王聖璋 博士 (Pro.S-C Wang) 學生 : 黃伯嘉 (Bo-Jia Huang) 2015/11/22 Temperature effects on the growth of SnS nanosheet structure using thermal decomposition.
1 Photocatalytic behavior of TiO2 thin films prepared by sol–gel process Ki Hyun Yoon a,b,c, ∗, Jung Sok Noha, Chul Han Kwon a,b, Mamoun Muhammedc a Department.
指導老師:林克默 博士 學 生:楊顯奕 報告日期: Outline 1. Introduction 2. Experiments 3. Spectroscopic ellipsometry 4. Results and discussion 5. Conclusion.
Meta-stable Sites in Amorphous Carbon Generated by Rapid Quenching of Liquid Diamond Seung-Hyeob Lee, Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu-Hwan Lee, and.
日 期: 指導老師:林克默 學 生:陳冠廷. Outline 1.Introduction 2.Experimental 3. Results and discussion 4. Conclusions.
日 期: 指導老師:林克默 博士 學 生:陳冠廷. Outline 1.Introduction 2.Experimental 3. Results and discussion 4. Conclusions.
Conductive epitaxial ZnO layers by ALD Conductive epitaxial ZnO layers by ALD Zs. Baji, Z. Lábadi, Zs. E. Horváth, I. Bársony Research Centre for Natural.
版權所有 翻印必究 Effects of annealing on structure, resistivity and transmittance of Ga doped ZnO films 教授 : 林克默博士 學生 : 董祐成 日期 :2011/3/8 2015/12/161 STUT 太陽能材料與模組實驗室.
NEEP 541 Displacements in Silicon Fall 2002 Jake Blanchard.
From: S.Y. Hu Y.C. Lee, J.W. Lee, J.C. Huang, J.L. Shen, W.
Low resistance indium tin oxide films on large scale glass substrate 學生 : 葉榮陞 指導老師 : 林克默.
1 Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer 指導教授 : 管 鴻 (Hon Kuan) 老師 學生 : 李宗育.
1 AlCl 3 -induced crystallization of amorphous silicon thin films 指導教授 : 管 鴻 (Hon Kuan) 老師 學生 : 李宗育 (Tsung-Yu Li)
1 ADC 2003 Nano Ni dot Effect on the structure of tetrahedral amorphous carbon films Churl Seung Lee, Tae Young Kim, Kwang-Ryeol Lee, Ki Hyun Yoon* Future.
Aluminum-induced in situ crystallization of HWCVD a-Si:H films
Influence of deposition conditions on the thermal stability of ZnO:Al films grown by rf magnetron sputtering Adviser : Shang-Chou Chang Co-Adviser : Tien-Chai.
Thermal annealing effect of tetrahedral amorphous carbon films deposited by filtered vacuum arc Youngkwang Lee *†,Tae-Young Kim*†, Kyu Hwan Oh†, Kwang-Ryeol.
報 告 人:王禮國 指導老師:林克默 博士 日 期: Outline 1. Introduction 2. Experimental procedure 3. Results and discussion 4. Conclusions 2.
日 期: 指導老師:林克默 博士 學 生:陳冠廷. Outline 1.Introduction 2.Experimental 3. Results and discussion 4. Conclusions.
Performance comparison of hybird sputtering/evaporation CuIn 1-x Ga x Se 2 solar cells with different transparent conducting oxide window layers Southern.
Introduction to Thin Film CIGS Solar Cells
ALD coating of porous materials and powders
TRANSPARENT ELECTRONICS
Hadi Maghsoudi 27 February 2015
Adviser : David. T.W. Lin Reporter : Chi-Hung Tsai 1 Date : 2014/07/01.
Effect of gallium incorporation on the physical properties of ZnO films grown by spray pyrolysis 指導教授:林克默 博士 報告學生:郭俊廷 報告日期: 99/11/29 Journal of Crystal.
Reporter :You.Peng.yuang 1 Date:2014/10/21 The Design of Flexible CO 2 Sensor based on the SAW Device MOST M
Production of NTCR Thermistor Devices based on NiMn2O4+d
Topic: 2016졸업논문 - 소스 및 드레인 전극 재료에 따른 비정질 InGaZnO 박막 트랜지스터의 소자열화
THE EFFECT OF SPIN COATING RATE ON MICROSTRUCTURES OF CUPROUS OXIDE THIN FILM PREPARED BY SOL-GEL TECHNIQUE DEWI SURIYANI BT CHE HALIN School of Material.
Riphah International University, Lahore
Fabrication of Photonic Crystals devices Hamidreza khashei
Introduction Thin films of hydrogenated amorphous silicon (a-Si:H) are used widely in electronic, opto-electronic and photovoltaic devices such as thin.
Advisor : David T.W. Lin Reporter : Yu-Jie Shen
Pulsed laser deposition (PLD) of a CZTS- absorber for thin solar cells with up to 5.2 % efficiency A. Cazzaniga1, A. Crovetto2, R. B. Ettlinger1,
Organic Polymer and Electronics Laboratory – Professor Lynn Loo
ECE699 – 004 Sensor Device Technology
Presentation transcript:

Highly transparent solution processed In-Ga-Zn oxide thin films 指導教授 : 林克默博士 學生 : 董祐成 日期 :99/08/16 Y. Wang S. W. Liu X. W. Sun J. L. Zhao G. K. L. Goh Q. V. Vu H. Y. Yu

Outline Introduction Experimental Result and Discussion Conclusion

Introduction 1.Transparent oxide semiconductors have attracted much attention as a potential active channel layer material for high performance thin film transistors (TFTs). 2.Compared to the silicon and organic semiconductors,transparent oxide semiconductors have unique advantages. They are transparent in the visible region due to a large bandgap. They also have a high field effect mobility even for an amorphous structure due to the s-electron conduction.

Experimental 1.The precursor solution for IGZO film was prepared by dissolving 0.1 M of zinc acetate dehydrate [Zn(OAc) 2 2H2O], 0.1 M indium chloride and M gallium chloride (the atom ratio of Ga: In: Zn = 25: 100: 100) in 2- methoxyethanol. 2. A 0.1 M monoethanolamine (MEA) was then added in the precursor solution as a sol–gel stabilizer.

3. After thoroughly mixing all components, the solution was stirred at 50 ℃ for 2 h and then aged for 24 h. 4. IGZO solution was then spin-coated for 2 times on the prepared substrate at a speed of 3,000 rpm for 30 s and heated at 300 ℃ in the air for 2 min after each coating.

5. Post-annealing was performed at 400 ~ 800 ℃ for 60 s in oxygen ambient by rapid thermal annealing (RTA) to remove the residual chemicals and improve the quality of the IGZO film. The thickness of the IGZO films was about~30 nm in our experiment.

Result and Discussion

1.No peaks can be detected from the IGZO films annealed at lower temperatures (400–600 ℃ ), indicating an amorphous structure. 2.The films annealed at higher temperatures (700– 800 ℃ ) show a weak broad peak, indicating a nanocrystalline phasebeing formed.

1.the sheet resistance is the highest at an intermediate annealing temperature (600 ℃ ). 2.It is worth mentioning that, although nanocrystalline phase tends to have a lower mobility through grain boundary scattering, the mobility may not be directly correlated to the nanocrystallite size as the crystal phase (amorphous or nanocrystalline) also affects the mobility. 3. In our study here, both the mobility and nanocrystallite size increases with the annealing temperature.

the IGZO films are highly transparent in the visible range (400–700 nm) with a transparency of more than 90% for films annealed with a temperature higher than 600 ℃. And the transparency is more than 75% for all films in the range of 300–900 nm.

Conclusion 1.In conclusion, we have fabricated highly transparent IGZO thin films by solution method using acetate-and chloratebased precursors. 2.The IGZO films show a phase change from amorphous to nanocrystalline with the increase of the post-annealing temperature. Compared to the nitrate-based IGZO precursor, the chlorate-based precursor increases the phase change temperature of IGZO thin films to 600–700 C.

3. The 600 ℃ annealed IGZO films showed a sheet resistance of 8.4 x ohm/square and a carrier concentration of 1.9 x cm -3, which is the most suitable for TFT channel in our experiment.

THANKS FOR YOUR ATTENTION