1 Spline Interpolation Method Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul

Slides:



Advertisements
Similar presentations
Newton’s Divided Difference Polynomial Method of Interpolation
Advertisements

1 Direct Method of Interpolation Electrical Engineering Majors Authors: Autar Kaw, Jai Paul
Differentiation-Discrete Functions
5/19/ Runge 4 th Order Method Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
Direct Method of Interpolation
7/2/ Differentiation-Discrete Functions Industrial Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
7/2/ Backward Divided Difference Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati
8/8/ Euler Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
8/15/ Differentiation-Discrete Functions Major: All Engineering Majors Authors: Autar Kaw, Sri Harsha Garapati.
8/15/ Binary Representation Major: All Engineering Majors Authors: Autar Kaw, Matthew Emmons
9/14/ Trapezoidal Rule of Integration Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Spline Interpolation Method Computer Engineering Majors Authors: Autar Kaw, Jai Paul
10/8/ Propagation of Errors Major: All Engineering Majors Authors: Autar Kaw, Matthew Emmons
10/16/20151 Sources of Error Major: All Engineering Majors Authors: Autar Kaw, Luke Snyder Transforming Numerical Methods.
1 Lagrangian Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Chemical Engineering Majors Authors: Autar Kaw, Jai.
1 Newton’s Divided Difference Polynomial Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw,
5/30/ Runge 4 th Order Method Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
11/17/ Shooting Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
11/30/ Romberg Rule of Integration Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
12/1/ Trapezoidal Rule of Integration Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Lagrangian Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
1 Direct Method of Interpolation Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1/16/ Runge 4 th Order Method Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Gaussian Elimination Mechanical Engineering Majors Author(s): Autar Kaw Transforming Numerical Methods Education for.
1/19/ Runge 4 th Order Method Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Direct Method of Interpolation Computer Engineering Majors Authors: Autar Kaw, Jai Paul
1 Direct Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul
2/28/ Runge 4 th Order Method Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Spline Interpolation Method Major: All Engineering Majors Authors: Autar Kaw, Jai Paul
1 Newton’s Divided Difference Polynomial Method of Interpolation Mechanical Engineering Majors Authors: Autar Kaw,
3/12/ Trapezoidal Rule of Integration Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
3/20/ Trapezoidal Rule of Integration Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
6/13/ Linear Regression Civil Engineering Majors Authors: Autar Kaw, Luke Snyder
Trapezoidal Rule of Integration
Newton-Raphson Method
Gauss Quadrature Rule of Integration
Differentiation-Discrete Functions
Differentiation-Discrete Functions
Newton’s Divided Difference Polynomial Method of Interpolation
Spline Interpolation Method
Spline Interpolation Method
Mechanical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Spline Interpolation Method
Direct Method of Interpolation
Spline Interpolation Method
Lagrangian Interpolation
Civil Engineering Majors Authors: Autar Kaw, Charlie Barker
Newton’s Divided Difference Polynomial Method of Interpolation
Trapezoidal Rule of Integration
Trapezoidal Rule of Integration
Spline Interpolation Method
Lagrangian Interpolation
Lagrangian Interpolation
Direct Method of Interpolation
Simpson’s 1/3rd Rule of Integration
Newton’s Divided Difference Polynomial Method of Interpolation
Lagrangian Interpolation
Lagrangian Interpolation
Simpson’s 1/3rd Rule of Integration
Simpson’s 1/3rd Rule of Integration
Simpson’s 1/3rd Rule of Integration
Mechanical Engineering Majors Authors: Autar Kaw, Luke Snyder
Electrical Engineering Majors Authors: Autar Kaw, Charlie Barker
Spline Interpolation Method
Chemical Engineering Majors Authors: Autar Kaw, Charlie Barker
Differentiation-Discrete Functions
Newton’s Divided Difference Polynomial Method of Interpolation
Lagrangian Interpolation
Presentation transcript:

1 Spline Interpolation Method Mechanical Engineering Majors Authors: Autar Kaw, Jai Paul Transforming Numerical Methods Education for STEM Undergraduates

Spline Method of Interpolation

3 What is Interpolation ? Given (x 0,y 0 ), (x 1,y 1 ), …… (x n,y n ), find the value of ‘y’ at a value of ‘x’ that is not given.

Interpolants Polynomials are the most common choice of interpolants because they are easy to: Evaluate Differentiate, and Integrate.

Why Splines ?

Why Splines ? Figure : Higher order polynomial interpolation is a bad idea

Linear Interpolation

Linear Interpolation (contd)

Example A trunnion is cooled 80°F to − 108°F. Given below is the table of the coefficient of thermal expansion vs. temperature. Determine the value of the coefficient of thermal expansion at T=−14°F using linear spline interpolation. Temperature ( o F) Thermal Expansion Coefficient (in/in/ o F) × 10 − × 10 −6 − × 10 −6 − × 10 −6 − × 10 −6 − × 10 −6

Linear Interpolation

Quadratic Interpolation

Quadratic Interpolation (contd)

Quadratic Splines (contd)

Quadratic Splines (contd)

Quadratic Splines (contd)

Example A trunnion is cooled 80°F to − 108°F. Given below is the table of the coefficient of thermal expansion vs. temperature. Determine the value of the coefficient of thermal expansion at T=−14°F using quadratic spline interpolation. Temperature ( o F) Thermal Expansion Coefficient (in/in/ o F) × 10 − × 10 −6 − × 10 −6 − × 10 −6 − × 10 −6 − × 10 −6

Solution

Solution (contd)

Solution (contd)

Solution (contd)

Solution (contd)

Solution (contd)

Reduction in Diameter The actual reduction in diameter is given by where T r = room temperature (°F) T f = temperature of cooling medium (°F) Since T r = 80 °F and T r = −108 °F, Find out the percentage difference in the reduction in the diameter by the above integral formula and the result using the thermal expansion coefficient from the cubic interpolation.

Reduction in Diameter

The absolute relative approximate error obtained between the results from the 2 nd methods is Reduction in diameter Taking the average coefficient of thermal expansion over this interval, given by:

Additional Resources For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit hod.html

THE END