Turbulence research at Nordita 1.Bottleneck effect 2.Magnetic fields (active vector) 3.Passive scalar diffusion Haugen & Brandenburg (2006, Phys. Fl. 18,

Slides:



Advertisements
Similar presentations
Outline Dynamo: theoretical General considerations and plans Progress report Dynamo action associated with astrophysical jets Progress report Dynamo: experiment.
Advertisements

Non-Fickian diffusion and Minimal Tau Approximation from numerical turbulence A.Brandenburg 1, P. Käpylä 2,3, A. Mohammed 4 1 Nordita, Copenhagen, Denmark.
INI 2004 Astrophysical dynamos Fausto Cattaneo Center for Magnetic Self-Organization Computations Institute Department of Mathematics.
Boundary Layer Flow Describes the transport phenomena near the surface for the case of fluid flowing past a solid object.
LES of Turbulent Flows: Lecture 10 (ME EN )
Large scale simulations of astrophysical turbulence Axel Brandenburg (Nordita, Copenhagen) Wolfgang Dobler (Univ. Calgary) Anders Johansen (MPIA, Heidelberg)
Direct numerical simulation study of a turbulent stably stratified air flow above the wavy water surface. O. A. Druzhinin, Y. I. Troitskaya Institute of.
“Physics at the End of the Galactic Cosmic-Ray Spectrum” Aspen, CO 4/28/05 Diffusive Shock Acceleration of High-Energy Cosmic Rays The origin of the very-highest-energy.
Does hyperviscosity spoil the inertial range? A. Brandenburg, N. E. L. Haugen Phys. Rev. E astro-ph/
Coronal Mass Ejections - the exhaust of modern dynamos Examples: systematic swirl (helicity) Measuring it quantitatively Connection with the dynamo Axel.
Numerical simulations of the magnetorotational instability (MRI) S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP, Cambridge,
Turbulent Scalar Mixing Revisiting the classical paradigm in variable diffusivity medium Gaurav Kumar Advisor: Prof. S. S. Girimaji Turbulence Research.
Solar Turbulence Friedrich Busse Dali Georgobiani Nagi Mansour Mark Miesch Aake Nordlund Mike Rogers Robert Stein Alan Wray.
Numerical simulations of the MRI: the effects of dissipation coefficients S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP,
1 Forced – decaying Helical – nonhelical. 2 Points of the talk Resistive effects during inverse transfer B-field does not care about irrotational part.
Statistics of Lorenz force in kinematic stage of magnetic dynamo at large Prandtle number S.S.Vergeles Landau Institute for Theoretical Physics in collaboration.
1 A New Technique for Deriving Electric Fields from Sequences of Vector Magnetograms George H. Fisher Brian T. Welsch William P. Abbett David J. Bercik.
The Pencil Code -- a high order MPI code for MHD turbulence Anders Johansen (Sterrewacht Leiden)‏ Axel Brandenburg (NORDITA, Stockholm)‏ Wolfgang Dobler.
Magneto-hydrodynamic turbulence: from the ISM to discs
Sunspots: the interface between dynamos and the theory of stellar atmospheres Axel Brandenburg (Nordita/Stockholm) 70 yr Guenther.
How long can left and right handed life forms coexist? Axel Brandenburg, Anja Andersen, Susanne Höfner, Martin Nilsson, Tuomas Multamäki (Nordita) Orig.
Magnetic field generation on long time scales Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+11Warnecke+11 Käpylä+12.
Magnetic dynamo over different astrophysical scales Axel Brandenburg & Fabio Del Sordo (Nordita) with contributions from many others seed field primordial.
0 Local and nonlocal conditional strain rates along gradient trajectories from various scalar fields in turbulence Lipo Wang Institut für Technische Verbrennung.
Critical issues to get right about stellar dynamos Axel Brandenburg (Nordita, Copenhagen) Shukurov et al. (2006, A&A 448, L33) Schekochihin et al. (2005,
Effect of Magnetic Helicity on Non-Helical Turbulent Dynamos N. KLEEORIN and I. ROGACHEVSKII Ben-Gurion University of the Negev, Beer Sheva, ISRAEL.
Magneto-rotational instability Axel Brandenburg (Nordita, Copenhagen)
Supergranulation Waves in the Subsurface Shear Layer Cristina Green Alexander Kosovichev Stanford University.
High-performance multi-user code development with Google Code  Current status  (...just google for Pencil Code)
Large scale magnetic fields and Dynamo theory Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008.
Comparison of convective boundary layer velocity spectra calculated from large eddy simulation and WRF model data Jeremy A. Gibbs and Evgeni Fedorovich.
Accretion disc dynamos B. von Rekowski, A. Brandenburg, 2004, A&A 420, B. von Rekowski, A. Brandenburg, W. Dobler, A. Shukurov, 2003 A&A 398,
Bern, MHD, and shear Axel Brandenburg (Nordita, Copenhagen) Collaborators: Nils Erland Haugen (Univ. Trondheim) Wolfgang Dobler (Freiburg  Calgary) Tarek.
Turbulent properties: - vary chaotically in time around a mean value - exhibit a wide, continuous range of scale variations - cascade energy from large.
LES of Turbulent Flows: Lecture 2 (ME EN )
Dynamo theory and magneto-rotational instability Axel Brandenburg (Nordita) seed field primordial (decay) diagnostic interest (CMB) AGN outflows MRI driven.
Large Scale Dynamo Action in MRI Disks Role of stratification Dynamo cycles Mean-field interpretation Incoherent alpha-shear dynamo Axel Brandenburg (Nordita,
Direct simulation of planetary and stellar dynamos II. Future challenges (maintenance of differential rotation) Gary A Glatzmaier University of California,
Catastrophic  -quenching alleviated by helicity flux and shear Axel Brandenburg (Nordita, Copenhagen) Christer Sandin (Uppsala) Collaborators: Eric G.
Astrophysical Magnetism Axel Brandenburg (Nordita, Stockholm)
Turbulent Dynamos: How I learned to ignore kinematic dynamo theory MFUV 2015 With Amir Jafari and Ben Jackel.
Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear.
Double diffusive mixing (thermohaline convection) 1. Semiconvection ( ⇋ diffusive convection) 2. saltfingering ( ⇋ thermohaline mixing) coincidences make.
Photospheric MHD simulation of solar pores Robert Cameron Alexander Vögler Vasily Zakharov Manfred Schüssler Max-Planck-Institut für Sonnensystemforschung.
Large scale simulations of astrophysical turbulence Axel Brandenburg (Nordita, Copenhagen) Wolfgang Dobler (Univ. Calgary) Anders Johansen (MPIA, Heidelberg)
ITP 2008 MRI Driven turbulence and dynamo action Fausto Cattaneo University of Chicago Argonne National Laboratory.
Numerical simulations of the SN driven ISM Axel Brandenburg (NORDITA, Copenhagen, Denmark) Boris Gudiksen (Stockholm Observatory, Sweden) Graeme Sarson.
High-order codes for astrophysical turbulence
Self-assembly of shallow magnetic spots through strongly stratified turbulence Axel Brandenburg (Nordita/Stockholm) Kemel+12 Brandenburg+13 Warnecke+11.
Simple Radiative Transfer in Decomposed Domains Tobi Heinemann Åke Nordlund Axel Brandenburg Wolfgang Dobler.
Self-organized magnetic structures in computational astrophysics Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+13Warnecke+11 Käpylä+12.
Dynamo action in shear flow turbulence Axel Brandenburg (Nordita, Copenhagen) Collaborators: Nils Erland Haugen (Univ. Trondheim) Wolfgang Dobler (Freiburg.
Turbulent transport coefficients from numerical experiments Axel Brandenburg & Matthias Rheinhardt (Nordita, Stockholm) Extracting concepts from grand.
ANGULAR MOMENTUM TRANSPORT BY MAGNETOHYDRODYNAMIC TURBULENCE Gordon Ogilvie University of Cambridge TACHOCLINE DYNAMICS
Expressions for fields in terms of potentials where is the electric field intensity, is the magnetic flux density, and is the magnetic vector potential,
Introduction to Space Weather Jie Zhang CSI 662 / PHYS 660 Spring, 2012 Copyright © The Sun: Magnetic Structure Feb. 16, 2012.
May 23, 2006SINS meeting Structure Formation and Particle Mixing in a Shear Flow Boundary Layer Matthew Palotti University of Wisconsin.
Prandtl number dependence of magnetic-to-kinetic dissipation 1.What gets in, will get out 2.Even for vanishing viscosity 3.What if magnetic fields 4. contribute?
Pencil Code: multi-purpose and multi-user maintained Axel Brandenburg (Nordita, Stockholm) Wolfgang Dobler (Univ. Calgary) and now many more…. (...just.
Turbulence & dynamos Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+11Warnecke+11 Käpylä+12.
THE DYNAMIC EVOLUTION OF TWISTED MAGNETIC FLUX TUBES IN A THREE-DIMENSIONALCONVECTING FLOW. II. TURBULENT PUMPING AND THE COHESION OF Ω-LOOPS.
Physical conditions in astrophysics Axel Brandenburg (Nordita/Stockholm) Kemel+12 Ilonidis+11Brandenburg+11Warnecke+11 Käpylä+12.
Stockholm, 3 Aug 2011 R.D. Simitev School of Mathematics F.H. Busse Institute of Physics Are thin-shell dynamos solar like? Part I Dynamo, Dynamical Systems.
Overview of dynamos in stars and galaxies
Dynamo action & MHD turbulence (in the ISM, hopefully…)
Convergence in Computational Science
Large scale simulations of astrophysical turbulence
Turbulent Kinetic Energy (TKE)
Energy spectra of small scale dynamos with large Reynolds numbers
Catastrophic a-quenching alleviated by helicity flux and shear
Presentation transcript:

Turbulence research at Nordita 1.Bottleneck effect 2.Magnetic fields (active vector) 3.Passive scalar diffusion Haugen & Brandenburg (2006, Phys. Fl. 18, ) Brandenburg & Subramanian (2005, Phys. Rep., 417, 1) Brandenburg (2001, ApJ 550, 824; and 2005, ApJ 625, 539) Brandenburg et al. (2004, Phys. Fl. 16, 1020)

2 Nordita in Stockholm Nordita in Stockholm

3 Nordita in Stockholm (i)~6 new post-docs Nordic+non-Nordic (ii)~2-3 new assist. profs (iii) ~5 programs/year (iv) visiting professors (1/2-2yr) (v)Nordita-days next August

4 Pencil Code Started in Sept with Wolfgang Dobler High order (6 th order in space, 3 rd order in time) Cache & memory efficient MPI, can run PacxMPI (across countries!) Maintained/developed by ~25 people (CVS!) Automatic validation (over night or any time) Max resolution so far , 256 procs Isotropic turbulence – –MHD, passive scl, CR Stratified layers – –Convection, radiation Shearing box – –MRI, dust, interstellar Sphere embedded in box – –Fully convective stars – –geodynamo Other applications – –Homochirality – –Spherical coordinates

5 (i) Higher order – less viscosity

6 (ii) High-order temporal schemes Main advantage: low amplitude errors 3 rd order 2 nd order 1 st order 2N-RK3 scheme (Williamson 1980)

7 Cartesian box MHD equations Induction Equation: Magn. Vector potential Momentum and Continuity eqns Viscous force forcing function (eigenfunction of curl)

8 Wallclock time versus processor # nearly linear Scaling 100 Mb/s shows limitations Gb/s no limitation

9 Wallclock time versus processor # nearly linear Scaling 100 Mb/s shows limitations Gb/s no limitation

10 Pre-processed data for animations

11 1. Bottleneck: surprise at higher res.

12 Bottleneck effect in hydro at (Porter, Pouquet,& Woodward 1998)

13 She-Jackson spectra

14 Bottleneck effect: 1D vs 3D spectra

15 Relation to ‘laboratory’ 1D spectra Parseval used:

16 Longitudinal spectra

17 Hyperviscous, Smagorinsky, normal Inertial range unaffected by artificial diffusion Haugen & Brandenburg (Phys. Fluids, astro-ph/041266) height of bottleneck increased with hyper onset of bottleneck at same position C S =0.20

18 Hyperdiffusion bottleneck Biskamp & Müller (2000)

19 Structure function exponents agrees with She-Leveque third moment

20 2. Allow for B: small scale dynamo action Pr M =  non-helically forced turbulence Pr M = 

21 Looks like k -3/2 at Still not large enough?! Spectra not on top of each other??  Different from case with imposed field!

22 Integral quantities converged “Only” 30% of energy is magnetic But 70% of dissipation is Ohmic!

23 Maybe no small scale “surface” dynamo? Small Pr M =  : stars and discs around NSs and YSOs Here: non-helically forced turbulence Schekochihin Haugen Brandenburg et al (2005) k When should we think of extrapolating to the sun? Implications for global models (w/strong SS field)

24 Scale separation: inverse cascade No inverse cascade in kinematic regime Decomposition in terms of Chandrasekhar-Kendall-Waleffe functions Position of the peak compatible with LS field: force-free Beltrami

25 3. Passive scalar diffusion

26 System of mean field equations mean concentration flux equation Damped wave equation, wave speed (causality!)

27 MTA - the minimal tau approximation 1) replace triple correlation by quadradatic 2) keep triple correlation 3) instead of now: 4) instead of diffusion eqn: damped wave equation i) any support for this proposal?? ii) what is tau?? (remains to be justified!)

28 Wave equation: consequences >>1 (!) small tau i) i)late time behavior unaffected (ordinary diffusion) ii) ii)early times: ballistic advection (superdiffusive) large tauintermediate tau Illustration of wave-like behavior:

29 Test 1: finite initial flux experiment Initial state: but with black: closure model red: turbulence sim.  direct evidence for oscillatory behavior! Dispersion Relation: Oscillatory for k 1 /k f <3 k f /k 1 St=  uk f

30 Test 2: imposed mean C gradient >>1 (!) Convergence to St=3 for different Re

31 Conclusions Turbulence increasingly important in astrophysics Bottleneck: asymptotically unimportant In practice: simulations not asymptotic: –hence important Dynamo action: details affected by bottleneck Mx 2 /cycle