Volume of Regions with cross- sections ----- an off shoot of Disk MethodV =  b a (π r 2 ) dr Area of each cross section (circle) * If you know the cross.

Slides:



Advertisements
Similar presentations
Section Volumes by Slicing
Advertisements

Volumes by Slicing: Disks and Washers
7 Applications of Integration
Disks, Washers, and Cross Sections Review
More on Volumes & Average Function Value. Average On the last test (2), the average of the test was: FYI - there were 35 who scored a 9 or 10, which means.
Applications of Integration Copyright © Cengage Learning. All rights reserved.
Volumes – The Disk Method Lesson 7.2. Revolving a Function Consider a function f(x) on the interval [a, b] Now consider revolving that segment of curve.
6.2 - Volumes. Definition: Right Cylinder Let B 1 and B 2 be two congruent bases. A cylinder is the points on the line segments perpendicular to the bases.
7.1 Area Between 2 Curves Objective: To calculate the area between 2 curves. Type 1: The top to bottom curve does not change. a b f(x) g(x) *Vertical.
SECTION 7.3 Volume. VOLUMES OF AN OBJECT WITH A KNOWN CROSS-SECTION  Think of the formula for the volume of a prism: V = Bh.  The base is a cross-section.
3 3 3 Find the volume of the pyramid: Consider a horizontal slice through the pyramid. s dh The volume of the slice is s 2 dh. If we put zero at the top.
Finding Volumes.
Volume of a Solid by Cross Section Section 5-9. Let be the region bounded by the graphs of x = y 2 and x=9. Find the volume of the solid that has as its.
5/19/2015 Perkins AP Calculus AB Day 7 Section 7.2.
Section Volumes by Slicing
Find the volume of a pyramid whose base is a square with sides of length L and whose height is h.
6.2C Volumes by Slicing with Known Cross-Sections.
V OLUMES OF SOLIDS WITH KNOWN CROSS SECTIONS 4-H.
Section 7.2 Solids of Revolution. 1 st Day Solids with Known Cross Sections.
7.3 Day One: Volumes by Slicing. Volumes by slicing can be found by adding up each slice of the solid as the thickness of the slices gets smaller and.
Volume of Cross-Sectional Solids
7.3.3 Volume by Cross-sectional Areas A.K.A. - Slicing.
Volume Section 7.3a. Recall a problem we did way back in Section 5.1… Estimate the volume of a solid sphere of radius 4. Each slice can be approximated.
Solids of Revolution Disk Method
Volume: The Disc Method
Let R be the region bounded by the curve y = e x/2, the y-axis and the line y = e. 1)Sketch the region R. Include points of intersection. 2) Find the.
Finding Volumes Chapter 6.2 February 22, In General: Vertical Cut:Horizontal Cut:
Volumes Lesson 6.2.
Volumes by Slicing 7.3 Solids of Revolution.
Finding Volumes. In General: Vertical Cut:Horizontal Cut:
Volumes by Slicing. disk Find the Volume of revolution using the disk method washer Find the volume of revolution using the washer method shell Find the.
Section Volumes by Slicing 7.3 Solids of Revolution.
Solids of Known Cross Section. Variation on Disc Method  With the disc method, you can find the volume of a solid having a circular cross section  The.
Ch. 8 – Applications of Definite Integrals 8.3 – Volumes.
Volumes of Solids with Known Cross Sections
Volume Find the area of a random cross section, then integrate it.
6.2 - Volumes Roshan. What is Volume? What do we mean by the volume of a solid? How do we know that the volume of a sphere of radius r is 4πr 3 /3 ? How.
SECTION 7-3-C Volumes of Known Cross - Sections. Recall: Perpendicular to x – axis Perpendicular to y – axis.
 The volume of a known integrable cross- section area A(x) from x = a to x = b is  Common areas:  square: A = s 2 semi-circle: A = ½  r 2 equilateral.
C.2.5b – Volumes of Revolution – Method of Cylinders Calculus – Santowski 6/12/20161Calculus - Santowski.
7.2 Volume: The Disk Method (Day 3) (Volume of Solids with known Cross- Sections) Objectives: -Students will find the volume of a solid of revolution using.
Drill: Find the area in the 4 th quadrant bounded by y=e x -5.6; Calculator is Allowed! 1) Sketch 2) Highlight 3) X Values 4) Integrate X=? X=0 X=1.723.
Section 7.3: Volume The Last One!!! Objective: Students will be able to… Find the volume of an object using one of the following methods: slicing, disk,
Applications of Integration
The Disk Method (7.2) February 14th, 2017.
8-3 Volumes.
Volumes of solids with known cross sections
7.2 Volume: The Disk Method
Finding Volumes.
Finding Volumes Chapter 6.2 February 22, 2007.
Cross Sections Section 7.2.
Solids not generated by Revolution
Volume by Cross Sections
7 Applications of Integration
Chapter 7.2: Volume The Disk Method The Washer Method Cross-sections
6.4 Volumes by Cross Sections
Warmup 1) 2) 3).
Volume of Solids with Known Cross Sections
Volume by Cross-sectional Areas A.K.A. - Slicing
Applications Of The Definite Integral
7 Applications of Integration
Volume - The Disk Method
Warm Up Find the volume of the following shapes (cubic inches)
Area & Volume Chapter 6.1 & 6.2 February 20, 2007.
Chapter 6 Cross Sectional Volume
5 More!.
Copyright © Cengage Learning. All rights reserved.
Section Volumes by Slicing
Warm Up Find the volume of the following 3 dimensional shapes.
AP Calc Riemann Sums/Area and Volume of Curves
Presentation transcript:

Volume of Regions with cross- sections an off shoot of Disk MethodV =  b a (π r 2 ) dr Area of each cross section (circle) * If you know the cross section’s shape, then V= A(x) dx where A(x) is the cross section’s area.  b a

Steps for success with Known Cross Sections 1. Draw the graph of the base on the coordinate plane and darken a rectangle (slash) on it. 2a. Determine the length of that rectangle ( top-bottom or right-left ) 2b. Draw a cross-section and put length from #2a on it ( note its location from the original description). Find an equation for the area of this cross- section using the length on the figure (Final formula should be in terms of one variable). 3. Integrate the area formula using boundaries from base drawing (#1).

Let R be the shaded region bounded by the graphs of y = x and y = e - 3x and the vertical line x = 1 as shown in the figure above ( c ) The region R is the base of a solid. For this solid, each cross section perpendicular to the x- axis is a rectangle whose height is 5 times the length of its base in region R. Find the volume of this solid. 1 1 y x O

The base of a certain solid is the circle x 2 + y 2 = 9 and each cross- section perpendicular to the x-axis is an equilateral triangle with one side across the base. Find the volume. Problem set on back page # 2a