200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 200 300 400 500 100 Sine & Cosine Tangent & Cotangent Secant & Cosecant.

Slides:



Advertisements
Similar presentations
Graphs of Tangent and Cotangent Functions
Advertisements

GRAPHS OF Secant and Cosecant Functions. For the graph of y = f(x) = sec x we'll take the reciprocal of the cosine values. x cos x y = sec x x y
Graphs of Other Trigonometric Functions
Graphs of other Trig Functions Section 4.6. Cosecant Curve What is the cosecant x? Where is cosecant not defined? ◦Any place that the Sin x = 0 The curve.
Chapter 4: Graphing & Inverse Functions
C HAPTER 14 D AY 9 Graphing Tan, Cot, Sec, Csc. G RAPHING T ANGENT tanx.
TRIGONOMETRY, 5.0 STUDENTS KNOW THE DEFINITIONS OF THE TANGENT AND COTANGENT FUNCTIONS AND CAN GRAPH THEM. Graphing Other Trigonometric Functions.
The Inverse Trigonometric Functions Section 4.2. Objectives Find the exact value of expressions involving the inverse sine, cosine, and tangent functions.
6.5 & 6.7 Notes Writing equations of trigonometric functions given the transformations.
Amplitude, Period, & Phase Shift
Graphing Tangent and Cotangent. Graphing Tangent Curve y = tan (x) 0  /6  /4  /3  /2 2  /3 3  /4 5  /6  7  /6 5  /4 4  /3 3  /2 5  /3 7 
4.4 Graphs of Sine and Cosine: Sinusoids. By the end of today, you should be able to: Graph the sine and cosine functions Find the amplitude, period,
Graphs of the Other Trigonometric Functions Section 4.6.
Section 4.6 Graphs of Other Trigonometric Functions.
Starter a 6 c A 53° 84° 1.Use Law of Sines to calculate side c of the triangle. 2.Use the Law of Cosines to calculate side a of the triangle. 3.Now find.
Lesson 4-6 Graphs of Secant and Cosecant. 2 Get out your graphing calculator… Graph the following y = cos x y = sec x What do you see??
Chapter 4 Trigonometric Functions
Warm-up:. Homework: 7.5: graph secant, cosecant, tangent, and cotangent functions from equations (6-7) In this section we will answer… What about the.
Cofunction Identities
CHAPTER 4 – LESSON 1 How do you graph sine and cosine by unwrapping the unit circle?
Slide Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 4 Graphs of the Circular Functions Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1.
13.7 (part 2) answers 34) y = cos (x – 1.5) 35) y = cos (x + 3/(2π)) 36) y = sin x –3π 37) 38) y = sin (x – 2) –4 39) y = cos (x +3) + π 40) y = sin (x.
Graphs of Tangent, Cotangent, Secant, and Cosecant
14.1, 14.2 (PC 4.5 & 4.6): Graphing Trig Functions HW: p.912 (3-5 all) HW tomorrow: p.913 (6, 10, 16, 18), p.919 (12-16 even) Quiz 14.1, 14.2: Tuesday,
Do Now: Graph the equation: X 2 + y 2 = 1 Draw and label the special right triangles What happens when the hypotenuse of each triangle equals 1?
Graphs of Other Trigonometric Functions
Graphs of the Trig Functions Objective To use the graphs of the trigonometric functions.
GRAPHS of Trig. Functions. We will primarily use the sin, cos, and tan function when graphing. However, the graphs of the other functions sec, csc, and.
Graph Trigonometric Functions
1 © 2011 Pearson Education, Inc. All rights reserved 1 © 2010 Pearson Education, Inc. All rights reserved © 2011 Pearson Education, Inc. All rights reserved.
Do Now:. 4.5 and 4.6: Graphing Trig Functions Function table: When you first started graphing linear functions you may recall having used the following.
Periodic Function Review
4.5 Graphs of Trigonometric Functions 2014 Digital Lesson.
More Trigonometric Graphs
Describe the vertical shift in the graph of y = -2sin3x + 4. A.) Up 2 B.) Down 2 C.) Up 4 D.) Down 4.
Graphing Primary and Reciprocal Trig Functions MHF4UI Monday November 12 th, 2012.
SFM Productions Presents: Another saga in your continuing Pre-Calculus experience! 4.6 Graphs of other Trigonometric Functions.
Section 7.7 Graphs of Tangent, Cotangent, Cosecant, and Secant Functions.
4.1 and 4.2 Sine Graph Sine & Cosine are periodic functions, repeating every period of 2  radians: 0 x y 180   90  /  /2 1 y = sin (x)x.
Section 4.2 The Unit Circle. Has a radius of 1 Center at the origin Defined by the equations: a) b)
6.7 Graphing Other Trigonometric Functions Objective: Graph tangent, cotangent, secant, and cosecant functions. Write equations of trigonometric functions.
Graphing Trigonometric Functions
Pre-Calculus Honors 4.5, 4.6, 4.7: Graphing Trig Functions
Trigonometric Graphs 6.2.
Amplitude, Period, & Phase Shift
Graphing Sine and Cosine
Graphs of Trigonometric Functions
Trigonometric Graphs 1.6 Day 1.
Chapter 4: Lesson 4.6 Graphs of Other Trig Functions
Graphs of Other Trigonometric Functions 11-2
Graphs of Trigonometric Functions
Bell Ringer Solve even #’s Pg. 52.
Amplitude, Period, & Phase Shift
Graphs of Trigonometric Functions
State the period, phase shift, and vertical shift
Graphs of Other Trigonometric Functions 11-2
MATH 1330 Section 5.3.
Graphs of Secant, Cosecant, and Cotangent
Graphs of Other Trigonometric Functions 11-2
Graphs of Trigonometric Functions
The Inverse Trigonometric Functions (Continued)
Graphs of Other Trigonometric Functions 14-2
Frequency and Phase Shifts
Section 4.6 Graphs of Other Trigonometric Functions
7.3: Amplitude and Vertical Shifts
Math /4.4 – Graphs of the Secant, Cosecant, Tangent, and Cotangent Functions.
Graphs of Trigonometric Functions
MATH 1330 Section 5.3.
9.5: Graphing Other Trigonometric Functions
Presentation transcript:

Sine & Cosine Tangent & Cotangent Secant & Cosecant Writing Trig Equations Misc. Review

Sine & Cosine 100 Describe the graphs of Sine and Cosine functions

Sine and Cosine 100 Sine: Hills and Valley Cosine: Up side Down Hair-do

Sine and Cosine 200 Find the amplitude, period, phase shift, vertical shift, start and end of this function:

Sine and Cosine 200 Amp = 5, period = π, phase shift =, start = end =, vertical shift =

Sine and Cosine300 Graph:

Sine and Cosine 300 Amp =, period = 72º, phase shift = -16º, start = 16º, end = 88º, vertical shift = 0

Sine and Cosine 400 Graph:

Sine and Cosine 400 Amp = 4(Reflected), period = 6π, phase shift = 3π start = -3π, end = 3π, vertical shift = -2

Sine and Cosine 500 Graph: y = cos x, for interval

Sine and Cosine500 X intercepts: and Max: 0 Min: -π, π

Tangent and Cotangent 100 Describe where asymptotes occur for tan and cot graphs.

Tangent and Cotangent 100 Tan: Cot: 1 st : Start- Period 1 st : Start 2 nd : 1 st +period 3 rd : 2 nd +period

Tangent and Cotangent 200 List the amplitude, Period, Phase shift, Vertical shift and asymptotes for

Tangent and Cotangent 200 Amp = 2(Reflected), period = 36º, phase shift = 12º, vertical shift = 0 Asym.1= -12º, Asym.2= 24º, Asym.3=60º

Tangent and Cotangent 300 Graph:

Tangent and Cotangent 300 Amp = 3, period = 360º, phase shift = 240º, vertical shift = -4 Start= -240º, Asym.1= -420º, Asym.2= -60º, Asym.3=300º

Tangent and Cotangent 400 Graph:

Tangent and Cotangent 400 Amp = 1, period =, phase shift =, vertical shift = 5 Start=, Asym.1=, Asym.2=, Asym.3=

Tangent and Cotangent 500 Graph: For interval

Tangent and Cotangent 500 X intercepts: π, 2π Asymptotes:

Secant and Cosecant 100 Describes where the asymptotes occur for Secant and Cosecant graphs

Secant and Cosecant 100 Sec: Csc: 1 st : Start- 1 st : Start 2 nd : 1 st + 3 rd : 2 nd +

Secant and Cosecant 200 List the amplitude, Period, Phase Shift, Start, Vertical Shift, and asymptotes for

Secant and Cosecant 200 Amp = 1, period =, phase shift =, vertical shift = -8 Start=, Asym.1=, Asym.2=, Asym.3=

Secant and Cosecant 300 Graph:

Secant and Cosecant 300 Amp =, period = 180º, phase shift = -45º, vertical shift = -3 Start= 45º, Asym.1= 0, Asym.2= 90º, Asym.3= 180º

Secant and Cosecant 400 Graph:

Secant and Cosecant 400 Amp = 5(reflected), period = 12π, phase shift =, vertical shift = 1 Start= -, Asym.1= -, Asym.2=, Asym.3=

Secant and Cosecant 500 Graph: in the interval

Secant and Cosecant 500 X intercepts: 7π, 8π, 9π Relative Min: Relative Max:

Writing Trig Equations100 Write an equation for sine given amplitude = 3, period = 180, Phase Shift = 45, Vertical Shift up 2

Writing Trig Equations 100

Writing Trig Equations 200 Write an equation for tangent given amplitude = 6, period = 90, Phase Shift = -180,Vertical Shift up 5 and the graph is reflected

Writing Trig Equations200

Writing Trig Equations300 Write an equation for Cosine given amplitude = 4, period =, Phase Shift =, Vertical Shift down 3

Writing Trig Equations 300

Writing Trig Equations400 Write an equation for Cosecant given amplitude = 2, period =, Phase Shift =, Vertical Shift up 2 and the graph is reflected.

Writing Trig Equations400

Writing Trig Equations 500 Write an equation for Secant given amplitude = 7, The first asymptote is, Second asymptote is Vertical Shift down 5.

Writing Trig Equations 500

Misc. Review 100 Determine if (-2) is a root of the polynomial:

Misc. Review 100 yes

Misc. Review 200 Convert 32°15’27” to decimal degree

Misc. Review °

Misc. Review 300 Find the reference angle for 235°

Misc. Review °

Misc. Review 400 State the domain and range of

Misc. Review 400

Misc. Review 500 Find the inverse of f(x)=8(x-2)³

Misc. Review 500