A first glance at the impedance of an SPS collimation system Nicolas Mounet, Benoit Salvant, Carlo Zannini Acknowledgments: collimation team (Daniele,

Slides:



Advertisements
Similar presentations
SPS impedance work in progress SPSU meeting August 11 th 2011.
Advertisements

Impedance of new ALICE beam pipe Benoit Salvant, Rainer Wanzenberg and Olga Zagorodnova Acknowledgments: Elias Metral, Nicolas Mounet, Mark Gallilee, Arturo.
Outcome of yesterday’s brainstorming on the potential of using CALIFES or CTF3 electron beam for impedance studies Elias Métral, Benoit Salvant, Carlo.
RF contact non conformities in LHC interconnects: Impedance aspects N. Mounet, B. Salvant With the help of: Gianluigi Arduini, Vincent Baglin, Serge Claudet,
Particle Studio simulations of the resistive wall impedance of copper cylindrical and rectangular beam pipes C. Zannini E. Metral, G. Rumolo, B. Salvant.
Impedance aspects of Crab cavities R. Calaga, N. Mounet, B. Salvant, E. Shaposhnikova Many thanks to F. Galleazzi, E. Metral, A. Mc Pherson, C. Zannini.
AB-ABP/LHC Injector Synchrotrons Section CERN, Giovanni Rumolo 1 Final results of the E-Cloud Instability MDs at the SPS (26 and 55 GeV/c) G.
Studies of impedance effects for a composite beam pipe for the experimental areas Request from M. Galilee, G. Schneider (TE/VSC)
LSWG day: Impedance and beam induced heating Nicolas Mounet *, Daria Atapovych, Nicolò Biancacci, Elias Métral, Tatiana Pieloni, Stefano Redaelli, Benoit.
Status of the PSB impedance model C. Zannini and G. Rumolo Thanks to: E. Benedetto, N. Biancacci, E. Métral, N. Mounet, T. Rijoff, B. Salvant.
Status of the SPS impedance model C. Zannini, G. Rumolo, B. Salvant Acknowledgments: H. Bartosik, O.Berrig, G. Iadarola, E. Métral, N. Mounet, V.G. Vaccaro,
Update of the SPS transverse impedance model Benoit for the impedance team.
IMPEDANCE OF Y-CHAMBER FOR SPS CRAB CAVITY By Phoevos Kardasopoulos Thanks to Benoit Salvant, Pei Zhang, Fred Galleazzi, Roberto Torres-Sanchez and Alick.
Updated status of the PSB impedance model C. Zannini and G. Rumolo Thanks to: E. Benedetto, N. Biancacci, E. Métral, B. Mikulec, N. Mounet, T. Rijoff,
Status of PSB Impedance calculations: Inconel undulated chambers C. Zannini, G. Rumolo, B. Salvant Thanks to: E. Benedetto, J. Borburgh.
Update of the SPS transverse impedance model C. Zannini, G. Rumolo, B. Salvant Acknowledgments: H. Bartosik, O.Berrig, F. Caspers, E. Chapochnikova, G.
Elias Métral, LHC Beam Commissioning Working Group meeting, 08/06/2010 /191 SINGLE-BUNCH INSTABILITY STUDIES IN THE LHC AT 3.5 TeV/c Elias Métral, N. Mounet.
Update on BGV impedance August 1 st 2013 Alexej Grudiev, Berengere Luthi, Benoit Salvant for the impedance team Many thanks to Bernd Dehning, Massimiliano.
Update on wire scanner impedance studies
Status from the collimator impedance MD in the LHC Collimation team:R. Assmann, R. Bruce, A. Rossi. Operation team:G.H. Hemelsoet, W. Venturini, V. Kain,
11 Update of the SPS impedance model G. Arduini, O. Berrig, F. Caspers, A. Grudiev, E. Métral, G. Rumolo, B. Salvant, E. Shaposhnikova, B. Spataro (INFN),
Injection Energy Review D. Schulte. Introduction Will review the injection energy So could answer the following questions: Which injection energy can.
Elias Métral, ICFA-HB2004, Bensheim, Germany, 18-22/10/ E. Métral TRANSVERSE MODE-COUPLING INSTABILITY IN THE CERN SUPER PROTON SYNCHROTRON G. Arduini,
Instability rise-time far above the TMCI threshold: Comparison between simple theory, MOSES and HEADTAIL E. Benedetto, E. Metral Acknowledgements: G. Rumolo,
Elias Métral, SPSU Study Group and Task Force on SPS Upgrade meeting, 25/03/2010 /311 TMCI Intensity Threshold for LHC Bunch(es) in the SPS u Executive.
News on TMCI in the SPS: Injecting high intensity bunches Benoit for the MD team: T. Bohl, K. Cornelis, H. Damerau, W. Hofle, E. Metral, G. Rumolo, B.
Elias Métral, LHC Beam Commissioning Working Group meeting, 30/11/2010 /241 PRELIMINARY FINDINGS FROM INSTABILITY MEASUREMENTS DURING THE 75ns AND 50ns.
N. Mounet and E. Métral - HB /10/20101 News on the 2D wall impedance theory N. Mounet (EPFL/ CERN) and E. Métral (CERN) Thesis supervisor : Prof.
Frank Zimmermann, material for LTC coherent tune shift due to collimator impedance - its dependence on gap size, bunch length, chromaticity, beta function,
Elias Métral /1 POWER SPECTRA COMPARISON BETWEEN DIFFERENT TYPES OF LONGITUDINAL BUNCH PROFILES FOR THE LHC BUNCH AT 3.5 TEV Elias Métral Elias Métral.
1 Update on the impedance of the SPS kickers E. Métral, G. Rumolo, B. Salvant, C. Zannini SPS impedance meeting - Oct. 16 th 2009 Acknowledgments: F. Caspers,
Update on new triplet beam screen impedance B. Salvant, N. Wang, C. Zannini 7 th December 2015 Acknowledgments: N. Biancacci, R. de Maria, E. Métral, N.
Impedance results of SLAC RC MD N. Biancacci, E.Mètral, B.Salvant, A.Valimaa OP, & Collimation Team.
Update on TMCI measurements March 5, 2008 G. Arduini, R. Jones, E. Métral, G. Papotti, G. Rumolo, B. Salvant, R Tomas, R. Steinhagen Many thanks to the.
Proposal to change bunch length during physics fills to assess beam induced heating after LS1 M. Barnes, P. Baudrenghien, A. Burov, S. Claudet, S. Jakobsen,
Impedance Working Group Update ICE meeting June 12 th 2013.
Elias Métral, LIS meeting, 29/01/2008 1/26 GAMMA TRANSITION JUMP FOR PS2 W. Bartmann, M. Benedikt, E. Métral and D. Möhl u Introduction with the case of.
AB-ABP/LHC Injector Synchrotrons Section CERN, Giovanni Rumolo 1 Preliminary results of the E-Cloud Instability MDs at the SPS G. Rumolo, in.
On-line tool to calculate the expected heat load from impedance (and synchrotron radiation) Benoit, Giovanni and Gianni with the help of Elias Metral,
1 Transverse single-bunch instabilities in the CERN SPS and LHC Benoit Salvant for the impedance team: Gianluigi Arduini, Theodoros Argyropoulos, Mike.
Feasibility of impedance measurements with beam N. Biancacci, N. Wang, E. Métral and B.Salvant COLUSM meeting 27/05/2016 Acknowledgements: A. Lafuente.
Geometric Impedance of LHC Collimators O. Frasciello, S. Tomassini, M. Zobov LNF-INFN Frascati, Italy With contributions and help of N.Mounet (CERN), A.Grudiev.
The HEADTAIL Development Working Group (HDWG)
New results on impedances, wake fields and electromagnetic fields in an axisymmetric beam pipe N. Mounet and E. Métral Acknowledgements: B. Salvant, B.
Proposals for 2015 impedance-related MD requests for PSB and SPS
Benchmarking the SPS transverse impedance model: headtail growth rates
MD2490: Measurement of the TMCI Threshold at Flat-Top
LHC at 7 TeV/c: comparison phase 1 / IR3MBC
News on the TMCI and SPS transverse impedance
Impedance working group update
E. Métral, N. Mounet and B. Salvant
Update of the impedance of new LHC experimental beam pipes
TCTP the CST side F. Caspers, H. Day, A. Grudiev, E. Metral, B. Salvant Acknowledgments: R. Assmann, A. Dallocchio, L. Gentini, C. Zannini Impedance Meeting.
N. Mounet, G. Rumolo and E. Métral
Electromagnetic fields in a resistive cylindrical beam pipe
E. Metral, G. Rumolo, B. Salvant, C. Zannini (CERN – BE-ABP-LIS)
Status from the collimator impedance MD in the LHC
NEWS ABOUT COLLIMATOR IMPEDANCE
LHC Beam screen: impact of the weld on the wakes
Tune shifts in LHC from collimators impedance
Impedance in a flat and infinite chamber: a new model
LHC impedance: Comparison between phase 1 and IR3MBC – follow-up
Some results on the LHC multibunch modes at 7 TeV/c
Collimator design with BPMs (TCTP)
C. Zannini, G. Rumolo, V.G. Vaccaro
Status of the EM simulations and modeling of ferrite loaded kickers
LHC collimation review follow-up Impedance with IR3MBC option & comparison with phase 1 tight settings N. Mounet, B. Salvant and E. Métral Acknowledgements:
SPS IMPEDANCE ESTIMATES
TMCI for LHC collimators (very preliminary results)
EM simulations of the LHC beam screens including the weld
Presentation transcript:

A first glance at the impedance of an SPS collimation system Nicolas Mounet, Benoit Salvant, Carlo Zannini Acknowledgments: collimation team (Daniele, Roderik and Stefano), Hannes Bartosik, Elias Métral and Giovanni Rumolo

Parameters for collimation system from Daniele (at 450 GeV) nameAngle [degrees] Planebetax[m]betay[m]halfgap[mm]MaterialLength[m] TCP.SPS0H CFC0.6 TCSG.SPS.10H CFC1 TCSG.SPS.290V CFC1 TCSG.SPS.5138Skew CFC1 TCSG.SPS.637Skew CFC1 Q26 Q20 nameAngle [degrees] Planebetax[m]betay[m]Halfgap [mm]MaterialLength[m] TCP.SPS0H CFC0.6 TCSG.SPS.10H CFC1 TCSG.SPS.290V CFC1 TCSG.SPS.5138Skew CFC1 TCSG.SPS.637Skew CFC1

Impedance computations Resistive wall of collimators with ReWall  by N. Mounet Geometric impedance from Stupakov formula for new TCTP type of collimator with buttons (pessimistic)  by N. Mounet Comparison with SPS impedance model  by C. Zannini

impedance of individual collimators (N. Mounet) Q26 Q20  Impedance computed in the plane of collimation (resisitive wall only) Contribution seems to be about half for TCP and half for TCS

Comparison between 26 GeV and 450 GeV (pessimistic for 26 GeV as should in principle be retracted) Zx Zy 26 GeV 450 GeV Zy Zx Difference is clearly visible!

Comparison with impedance model (C. Zannini), contribution to total impedance (N. Mounet) Real part Imaginary part  Geometric impedance small compared to resistive wall impedance  Impedance of collimators in the 10 to 20% range of the full SPS impedance (dipolar) Q26 vertical (dipolar) 26 GeV

Comparison with impedance model (C. Zannini), contribution to total impedance (N. Mounet) Q26 horizontal (dipolar) Real part Imaginary part  Geometric impedance small compared to resistive wall impedance  Impedance of collimators in the 10 to 20% range of the full SPS impedance (dipolar) 26 GeV

 Geometric impedance small compared to resistive wall impedance  Impedance of collimators in the 5 to 15% range of the full SPS impedance (dipolar) Comparison with impedance model (C. Zannini), contribution to total impedance (N. Mounet) Q20 vertical (dipolar) Real part Imaginary part 450 GeV

 Geometric impedance small compared to resistive wall impedance  Impedance of collimators in the 5 to 20% range of the full SPS impedance (dipolar) Comparison with impedance model (C. Zannini), contribution to total impedance (N. Mounet) Q20 horizontal (dipolar) Real part Imaginary part 450 GeV

First estimations using DELPHI and Sacherer formula by Nicolas Mounet show an increase of imaginary tune shift and TMCI threshold of the order of 5%.  As presented, this collimation system would not be a brick wall showstopper for the SPS transverse collective effects, but transverse impedance is large enough that we have to be careful in the implementation and be sure that it has clear benefits that offset the impedance increase. Impact on collective effects?

Conclusions Many thanks to all colleagues involved for sending relevant information within such a short time Very preliminary results The proposed collimation system configuration would lead to an increase of transverse impedance contributions in the range of 5 to 20% Increasing conductivity of the jaw would also help as in LHC (coating or new carbon jaws)