QOD. Pythagorean Theorem Pythagorean triple Pythagorean triple – a set of nonzero whole numbers a, b, and c that satisfy the equation 3,4,5 5,12,13 8,15,17.

Slides:



Advertisements
Similar presentations
The Pythagorean Theorem is probably the most famous mathematical relationship. As you learned in Lesson 1-6, it states that in a right triangle, the sum.
Advertisements

EQ: How can we use the Pythagoren Theorem and Triangle Inequalities to identify a triangle?
TODAY IN GEOMETRY… Warm Up: Simplifying Radicals
TODAY IN GEOMETRY…  Practice: Solving missing sides using the Pythagorean Theorem  Learning Target 1: Use the Converse of the Pythagorean Theorem determine.
The Pythagorean Theorem. The Right Triangle A right triangle is a triangle that contains one right angle. A right angle is 90 o Right Angle.
8-1 The Pythagorean Theorem and Its Converse. Parts of a Right Triangle In a right triangle, the side opposite the right angle is called the hypotenuse.
CHAPTER 8 RIGHT TRIANGLES
8.1 Pythagorean Theorem and Its Converse
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
Benchmark 40 I can find the missing side of a right triangle using the Pythagorean Theorem.
Chapter 7.1 & 7.2 Notes: The Pythagorean Theorem and its Converse
Pythagorean Theorem 5.4. Learn the Pythagorean Theorem. Define Pythagorean triple. Learn the Pythagorean Inequality. Solve problems with the Pythagorean.
8.1 The Pythagorean Theorem and Its Converse. Pythagorean Theorem In a right triangle, the sum of the squares of the lengths of the legs is equal to the.
Objective: To use the Pythagorean Theorem and its converse.
Pythagorean Theorem And Its Converse
+ Warm Up B. + Homework page 4 in packet + #10 1. Given 2. Theorem Given 4. Corresponding angles are congruent 5. Reflexive 6. AA Similarity 7.
7.1 – Apply the Pythagorean Theorem. Pythagorean Theorem: leg hypotenuse a b c c 2 = a 2 + b 2 (hypotenuse) 2 = (leg) 2 + (leg) 2 If a triangle is a right.
White Boards ♥Please get white boards, markers & erasers.
Section 8-1: The Pythagorean Theorem and its Converse.
Goal 1: To use the Pythagorean Theorem Goal 2: To use the Converse of the Pythagorean Theorem.
8.1 The Pythagorean Theorem and Its Converse We will learn to use the Pythagorean Theorem and its converse.
Chapter 7 Lesson 2 Objective: To Objective: To use the Pythagorean Theorem.
The Pythagorean Theorem
12/24/2015 Geometry Section 9.3 The Converse of the Pythagorean Theorem.
Objectives: 1) To use the Pythagorean Theorem. 2) To use the converse of the Pythagorean Theorem.
Pythagorean Theorem and Its Converse Chapter 8 Section 1.
Converse of Pythagorean Theorem
Pythagorean Theorem Theorem 8-1: Pythagorean Theorem – In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of.
3/11-3/ The Pythagorean Theorem. Learning Target I can use the Pythagorean Theorem to find missing sides of right triangles.
Section 8-3 The Converse of the Pythagorean Theorem.
GEOMETRY HELP A right triangle has legs of length 16 and 30. Find the length of the hypotenuse. Do the lengths of the sides form a Pythagorean triple?
Altitude-on-hypotenuse. Find the value of x x 4√3 10 x = 4√3 4√3 x + 10 x x = 163 x x – 48 = 0 (x – 4)(x + 12) = 0 x = 4 x = -12.
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
CONVERSE OF THE PYTHAGOREAN THEOREM. PYTHAGOREAN TRIPLES Values that work as whole numbers in the Pythagorean Theorem Primitive Triples will not reduce.
Sec. 8-1 The Pythagorean Theorem and its Converse.
Lesson 5-7 Use the Pythagorean Thm 1 Identify the Pythagorean triples 2 Use the Pythagorean inequalities to classify ∆s 3.
Warm-Up If a triangle has two side lengths of 12 and 5, what is the range of possible values for the third side? 2.
Objective: To use the Pythagorean Theorem to solve real world problems. Class Notes Sec 9.2 & a b c a short leg b long leg c hypotenuse 2. Pythagorean.
8.1 Pythagorean Theorem Understand how to use the Pythagorean Theorem and its converse to solve problems Do Now: 1. An entertainment center is 52 in. wide.
Introduction to Chapter 4: Pythagorean Theorem and Its Converse
Warm Up Simplify the square roots
8.1 Pythagorean Theorem and Its Converse
8-1 Pythagorean Theorem and the Converse
8-1: The Pythagorean Theorem and its Converse
Pythagorean Theorem and it’s Converse
7-2 The Pythagorean Theorem
The Converse of the Pythagorean Theorem
LT 5.7: Apply Pythagorean Theorem and its Converse
4.5 The Converse of the Pythagorean Theorem
Section 7.2 Pythagorean Theorem and its Converse Objective: Students will be able to use the Pythagorean Theorem and its Converse. Warm up Theorem 7-4.
Bellringer Simplify each expression 5 ∙ ∙ 8.
7.2 The Pythagorean Theorem and its Converse
Pythagorean Theorem and Its Converse
WARM UP Decide whether the set of numbers can represent the side lengths of a triangle. 2, 10, 12 6, 8, 10 5, 6, 11.
8.1 The Pythagorean Theorem and Its Converse
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
The Pythagorean Theorem is probably the most famous mathematical relationship. As you learned in Lesson 1-6, it states that in a right triangle, the sum.
The Pythagorean Theorem
8-2 The Pythagorean Theorem and Its Converse
8.1 Pythagorean Theorem and Its Converse
Theorems Relating to the Pythagorean Theorem
The Pythagorean Theorem
C = 10 c = 5.
7-1 and 7-2: Apply the Pythagorean Theorem
8.1 Pythagorean Theorem and Its Converse
The Pythagorean Theorem and Its Converse
Objective: To use the Pythagorean Theorem and its converse.
WARM UP Decide whether the set of numbers can represent the side lengths of a triangle. 2, 10, 12 6, 8, 10 5, 6, 11.
Converse to the Pythagorean Theorem
7-2 PYTHAGOREAN THEOREM AND ITS CONVERSE
Presentation transcript:

QOD

Pythagorean Theorem

Pythagorean triple Pythagorean triple – a set of nonzero whole numbers a, b, and c that satisfy the equation 3,4,5 5,12,13 8,15,17 7,24,25

Practice #1 What is the length of the hypotenuse of triangle ABC?

You try. Find the length of the hypotenuse of triangle LMN. Do the side lengths form a Pythagorean triple?

Practice #2 What is the value of x? Simplify the radical if necessary.

You try. What is the value of x?

Converse of the Pythagorean Theorem What if a²+b² ≠ c²? Then what kind of triangle is formed? Acute Triangle: if c² < a² + b² Obtuse Triangle: if c² > a² + b²

Practice

You Try..

Homework/Classwork Pg. 495, #8-34 even

Closure Find x. 1.)2.) 3.)

QOD 1. 2.

Classwork/Homework WKST 8.1 WKST 8.1 (crossword)

Closure