Rossana Bonomi R. Bonomi TE-MSC-CMI SPL Seminar 2012.

Slides:



Advertisements
Similar presentations
SPL Intercavity support Conceptual design review 04/11/ A. Vande Craen TE/MSC-CMI.
Advertisements

Superconducting Spoke Resonator Cavities and Cryomodules
February 17-18, 2010 R&D ERL Roberto Than R&D ERL Cryogenics Roberto Than February 17-18, 2010 CRYOGENICS.
1 Presented at ColUSM by D. Ramos on behalf of the Cold Collimator Feasibility Study Working Group Longitudinal.
ORNL is managed by UT-Battelle for the US Department of Energy Commissioning and Operation of the Horizontal Test Apparatus at SNS Presented at: CEC/ICMC.
SPL cryo-module conceptual design review Cavity, helium vessel and tuner assembly N. Valverde, G. Arnau, S. Atieh, I. Aviles, O. Capatina, M. Esposito,
Large-capacity Helium refrigeration : from state-of-the-art towards FCC reference solutions Francois Millet – March 2015.
23 Jan 2007 LASA Cryogenics Global Group 1 ILC Cryomodule piping L. Tavian for the cryogenics global group.
R&D Status and Plan on The Cryostat N. Ohuchi, K. Tsuchiya, A. Terashima, H. Hisamatsu, M. Masuzawa, T. Okamura, H. Hayano 1.STF-Cryostat Design 2.Construction.
Heat load study of cryomodule in STF
FCC Study Kick-off Meeting Cryogenics Laurent Tavian CERN, Technology Department 14 February 2014 Thanks to Ph. Lebrun for fruitful discussions.
V.Parma, CERN, TE-MSC On bahalf of the Cryomodule development team
Internal Cryomodule Instrumentation ERL Main Linac Cryomodule 10/10/2015 Peter Quigley, MLC Design Review.
Accelerators for ADS March 2014 CERN Approach for a reliable cryogenic system T. Junquera (ACS) *Work supported by the EU, FP7 MAX contract number.
CRYOGENICS FOR MLC Cryogenic Piping in the Module Eric Smith External Review of MLC October 03, October 2012Cryogenics for MLC1.
Cryogenics in SPS & LHC (2 K / 4.5 K) LHC-CC11, 14 November 2011 L. Tavian, CERN, TE-CRG With the contribution of N. Delruelle, G. Ferlin & B. Vullierme.
Modeling and simulation of cryogenic processes using EcosimPro
Rossana Bonomi ESS Cryomodule Status Meeting, 9/1/2013.
5 K Shield Study of STF Cryomodule Norihito Ohuchi, Norio Higashi KEK Xu QingJin IHEP 2008/3/3-61Sendai-GDE-Meeting.
Test plan for SPL short cryomodule O. Brunner, W. Weingarten WW 1SPL cryo-module meeting 19 October 2010.
Engineering Department ENEN Crab Cavity Cryomodules: Thermal Aspects F. Carra, R. Bonomi with inputs from O. Capatina, L. Alberty Vieira, R. Leuxe, T.
L. Serio COPING WITH TRANSIENTS L. SERIO CERN, Geneva (Switzerland)
Longitudinal HOM damping estimations for SPL cavity. status W. Weingarten 26 July 20101SPL Cavity WG Meeting.
Summery of the power coupler session at the LCWS13 workshop E. Kako W.-D. Möller H. Hayano A. Yamamoto All members of SCRF WG November 14, 2013.
Thomas Jefferson National Accelerator Facility Page 1 SPL Cryogenic and vacuum sectorisations 9-10 November, 2009 Joe Preble Workshop on cryogenic and.
C.KotnigFCC Design Meeting FCC Beam Screen cooling Claudio Kotnig.
CRYOGENICS FOR MLC Cryogenic Principle of the Module Eric Smith External Review of MLC October 03, October 2012Cryogenics for MLC1.
Heat loads and cryogenics L.Tavian, D. Delikaris CERN, Cryogenics Group, Technology Department Accelerators & Technology Sector Friday, October 15, 20101HE-LHC'10.
SLHC WG3 (Cryomodule) summary & plan with recommendation to the CB V.Parma, CERN TE-MSC P. DUTHIL, IN2P3-CNRS 3rd SPL collaboration meeting, CERN
The integration of 420 m detectors into the LHC
MAIN LINAC CRYOMODULE DESIGN REVIEW INPUT COUPLER September 5, 2012V. Veshcherevich.
Cryogenic scheme, pipes and valves dimensions U.Wagner CERN TE-CRG.
Date 2007/Sept./12-14 EDR kick-off-meeting Global Design Effort 1 Cryomodule Interface definition N. Ohuchi.
SPL cryomodule specification meeting, CERN 19th October 2010 SPL cryomodule specification: Goals of the meeting SPL cryomodule specification: Goals of.
5 K Shield Study of STF Cryomodule (up-dated) Norihito Ohuchi KEK 2008/4/21-251FNAL-SCRF-Meeting.
EXTRACTION OF HIGH VOLUME CRYOGENIC HEAT LOAD
Design specificities of the SPL cryomodule prototype O. Capatina, V. Parma – CERN On behalf of the SPL team 1.
CW Cryomodules for Project X Yuriy Orlov, Tom Nicol, and Tom Peterson Cryomodules for Project X, 14 June 2013Page 1.
Ralf Eichhorn CLASSE, Cornell University. I will not talk about: Cavities (Nick and Sam did this) HOM absorbers (did that yesterday) Power couplers (see.
Project X Workshop - Cryogenics1 Project X CRYOGENICS Arkadiy Klebaner.
Integration and Cold Testing of the CW ERL Cryomodule at Daresbury Shrikant Pattalwar ASTeC, STFC, Daresbury Laboratory (UK) On behalf of ERL Cryomodule.
Spoke section of the ESS linac: - the Spoke cryomodules - the cryogenic distribution system P. DUTHIL (CNRS-IN2P3 IPN Orsay / Division Accélérateurs) on.
5K shield removal experiment in STF cryomodule Norihito Ohuchi 2008/11/181ILC08-GDE-Meeting (CHICAGO)
R. Bonomi - SLHiPP2, Catania 3-4/5/20121 SPL Thermal Studies R. Bonomi Superconducting linacs for high power proton beams - Catania, 2012.
Cavity Supporting Scheme Paulo Azevedo, CERN – TE/MSC SPL Conceptual Review, 04/11/2010.
ILC : Type IV Cryomodule Design Meeting Main cryogenic issues, L. Tavian, AT-ACR C ryostat issues, V.Parma, AT-CRI CERN, January 2006.
FCC Infrastructure & Operation Update on the cryogenics study Laurent Tavian CERN, TE-CRG 28 October 2015.
Plans for CERN SPL Test Cryomodule W. Weingarten on behalf of V. Parma, CERN.
Design Status of the Spoke Cryomodule for MYRRHA SLHIPP Louvain la Neuve 17-18/04/2013 Design Status of the Spoke Cryomodule for MYRRHA SLHIPP Louvain.
Status of the SPL cryomodule study Rossana Bonomi Lund, 6 th Dec R. Bonomi.
SIS 100 Vacuum chamber Recooler String system Components
SPL RF coupler: integration aspects
CERN – Zanon discussions
Process Simulation for the LCLS-II Cryogenic Systems
Innovative He cycle Francois Millet.
Norihito Ohuchi – KEK (presented by P. Pierini - INFN)
5K or not? & TTF module thermal modeling update
TTF module thermal modeling
CEPC Cryogenic System Jianqin Zhang, Shaopeng Li
CERN Cryomodule Requirements for Crab Cavities
Operation experience of cryogenic system and cryomodules for the superconducting linear accelerator at IUAC, New Delhi. T S Datta ( On behalf of Cryogenics.
KEK injector cryomodule
5K Shield Study & HL Measurements
Design of a SHORT Cryomodule for the Superconducting Proton Linac of CERN IPNOrsay – CNRS Sébastien ROUSSELOT Patxi DUTHIL Patricia DUCHESNE Philippe DAMBRE.
Cryomodules Challenges for PERLE
CEPC-650MHz Cavity Cryomodule
Magnetic Field Sensors and Measurements in Cryomodules
Magnetic shielding and thermal shielding
Cryomodule Design for CW Operation 3.9 GHz considerations
Conceptual design of the Cryogenic System of Comprehensive Research Facility for Key Fusion Reactor Core Systems Liangbing Hu Sep.4.
Presentation transcript:

Rossana Bonomi R. Bonomi TE-MSC-CMI SPL Seminar 2012

Outline SPL Short cryomodule heat loads and refrigeration powers Thermal analyses of components Double-walled tube Cold-warm transition Vacuum vessel and thermal shield Mock-up 1 R. Bonomi TE-MSC-CMI SPL Seminar 2012

Short Cryomodule 2 R. Bonomi TE-MSC-CMI SPL Seminar cavities, 4+1 DWT, 2 CWT

Heat contributions from: Double-walled tubeto 2 K, 4.5 K Cold-warm transitionto 2 K, K Vacuum vesselto K Thermal shieldto 2 K Cryomodule temperature levels Temperature levels: Bath2 K Inlet helium gas4.5 K Thermal shield50-70 K Vacuum vessel300 K TS VV CM CWT DWT 3 R. Bonomi TE-MSC-CMI SPL Seminar 2012 Very important for thermodynamic costs

Cryomodule heat loads SubassemblyTypeSource Desti- 2 K 4.5 K K [W] Double-walled tube DWT cd rad RF DWTbath 13 (1) x 5 = (2) x 5 = (3) x x 1 = (4) x x 1 = cvDWTgas----- (1) 60 (2) x 5 = (3) x 5 = (4) - Cold-warm transition * CWT cdWFTS x 2 = 46.0 cdTSCM 0.8 x 2 = x 2 = x 2 = x 2 = radWF + wallCM 1.0 x 2 = x 2 = x 2 = x 2 = radWFTS x 2 = 0.4 Vacuum vessel VV rad **VVTS Thermal shield TS rad **TSCM Cavity ***RFcavityCM- (1) - (2) 20.0 (3) x 4 = (4) x 4 = TOT for SCM [W]69.7 (1) 5.2 (2) 86.8 (3) (4) -300 (2) 300 (3) DWT Static heat loads (1) RF off, cool off (2) RF off, cool on DWT Dynamic heat loads (3) RF on, cool on (4) RF on, cool off * Thermal shield at 50 K, placed at 0.15 m from cold flange ** C. Maglioni, V. Parma’s technical note: “Assessment of static heat loads in the LHC arc, from the commissioning of sector 7-8”, LHC Project Note 409, 2008 (VV  TS 1.7 W/m 2 - TS  CM 0.1 W/m 2 ) *** V. Parma’s presentation: 4

@ 2 K (990 W el /W th K (16 W el /W th 4.5 K, non-isothermal: 40 mg/s warm gas are equivalent to 4 W 4.5 K (100 W th /(g/s)) 4 W 4.5 K cost 880 W el (220 W el /W th *) For 4+1 DWT  4.4 kW el (1)70 W th 69.3 kW el (2)5 W th 5.0 kW el (3)87 W th 86.1 kW el (4)194 W th kW el Cryomodule refrigerator powers Static operations Dynamic operations 79 W th 1.3 kW el * S. Claudet et al. “1.8 K Refrigeration Units for the LHC: Performance Assessment of Pre-series Units”, proceedings ICEC20 5 When DWT is actively cooled, power is less than half ! R. Bonomi TE-MSC-CMI SPL Seminar 2012

Around 92 kW el of refrigerator power are expected during nominal operation for the SPL short cryomodule (4 cavities) Heat loads due to instrumentation, HOMs and critical regions have not been considered yet Cryomodule tot refrigerator power 6 R. Bonomi TE-MSC-CMI SPL Seminar 2012

Double-walled tube Semi-analytical model * 1D, 3 layers, 22 nodes Material properties: Cryocomp Gas properties: Hepak L= 300 mm, flange-flange length D= 50 mm, internal diameter S= 1152 mm 2, conductive section m= 40 mg/s, helium mass flow (laminar) * Based on O. Capatina ‘s presentation: 7 R. Bonomi TE-MSC-CMI SPL Seminar 2012 Inner wall: average thermal conductivity Cu-SS

Double-walled tube 8 R. Bonomi TE-MSC-CMI SPL Seminar 2012 Copper layer accounts for 5-7% of tot heat conducted

Double-walled tube Results are comparable with FE 2D simulations (Comsol) Heat load at bath: < 0.5 W RF power: 10.1 W Antenna radiative load (330 K): 0.6 W Thermal contraction: < 1 mm 9 RF power, No COOL 40 mg/s He Heat to He bath reduced to less than 2% R. Bonomi TE-MSC-CMI SPL Seminar 2012

Double-walled tube RF currents node position is critical.. Shift [mm]Prf [W]Qrad (W)Qbath [W] RF currents 10 R. Bonomi TE-MSC-CMI SPL Seminar 2012

(Figure from: « An Introduction to Cryogenics », Ph.Lebrun, CERN/AT ) He refrigerationHe Liquefaction Thermodynamic efficiency of DWT gas cooling How to compare isothermal and non- isothermal processes ? Electrical power for liquefaction of 1 g/s helium: 6200 W el Carnot 4.5 K: 66 W el /W th 1 g/s liquid helium is equivalent to 100 W 4.5 K * 11 * U. Wagner s note: R. Bonomi TE-MSC-CMI SPL Seminar 2012

Thermodynamic efficiency of DWT gas cooling Comparison with other ways of cooling (heat intercepts, self-sustained cooling) 2 K, K, 80 K 2K [W] P [W el ] 9K [W] P [W el ] 80K [W] P [W el ] vapours rate [g/s] Q 4.5K [W] (1g/s=100W) P [W el ] Total power [Wel] A) No intercept , B) 1 optimised 80K 2.22, ,892 C) 2 optimised 80K & 9K ,372 D) 4.5K self-sustained vapour cooling E) He vapour cooling (4.5K-300K) F) He vapour cooling (4.5K-300K), RF power on ,375 G) No He vapour cooling, RF power on 2221, R. Bonomi TE-MSC-CMI SPL Seminar 2012

Cold-warm transition Mathcad/Matlab analytical analysis for each position and temperature of thermal shield Heat due to radiation and to conduction are evaluated through equivalent electric analysis TS 13 R. Bonomi TE-MSC-CMI SPL Seminar 2012

Cold-warm transition Heat to TS [W] Heat to BATH [W] Cold flange Warm flange REAL refr power [kW el ] Cold flange Warm flange 14 R. Bonomi TE-MSC-CMI SPL Seminar 2012 TS optimal position for minimisation of required refrigerator power Each CWT could evaporate helium for 2 DWTs (2 W=>95 mg/s)

Vacuum vessel and thermal shield Radiation values rescaled from LHC commissioning of sector 7-8 LHC linear heat loads (average values): 4.3 W/m vacuum vessel to thermal shield 0.2 W/m thermal shield to cold mass For SPL SCM: 33.0 TS from vacuum vessel K from thermal shield * C. Maglioni, LHC Project Note R. Bonomi TE-MSC-CMI SPL Seminar 2012

Mock-up test 16 R. Bonomi TE-MSC-CMI SPL Seminar 2012

Mock-up test 1.5 cavities, 2 DWTs, 1 intercavity support Cooled by LN2 Test of all possible cooling conditions No RF power 17 Validation of: Cavity supporting system Assembly realignment of cavities via vessel interface Alignment measuring device (OWPM) Thermal contractions DWT active cooling R. Bonomi TE-MSC-CMI SPL Seminar 2012

Mock-up test Estimated static heat load: Conduction from DWTs+feedthroughs: ~ 2 W (300 mg/s GN2) Radiation from vacuum vessel: ~ 10 W (rescaled from LHC) Example: evaporation of 1/4 of total LN2 volume (10 l out of 40 l) takes ~ 1.5 days 18 R. Bonomi TE-MSC-CMI SPL Seminar 2012

Thanks for your attention! SPL workspace: SPL docs on EDMS: R. Bonomi TE-MSC-CMI SPL Seminar 2012

Operating conditionValue Beam current/pulse lenght40 mA/0.4 ms beam pulse 20 mA/0.8 ms beam pulse cryo duty cycle4.11%8.22% quality factor10 x x 10 9 accelerating field25 MV/m Source of Heat LoadHeat 2K Beam current/pulse lenght40 mA/0.4 ms beam pulse20 mA/0.8 ms beam pulse dynamic heat load per cavity5.1 W20.4 W static losses<1 W (tbc) power coupler loss at 2 K<0.2 W HOM loss in cavity at 2 K<1<3 W HOM coupler loss at 2 K (per coupl.) <0.2 W beam loss1 W 2 K8.5 W25.8 W SPL operational conditions

Ideal vs. real refrigerator power Temperature level [K] IDEAL - Carnot [Wel/Wth] REAL [Wel/Wth] Efficiency wrt Carnot [%] < <30 R. Bonomi TE-MSC-CMI SPL Seminar 2012

(B) 1 Heat intercept 2K 300K x1x1 L 80K R. Bonomi TE-MSC-CMI SPL Seminar 2012

(C) 2 Heat intercepts 2K 300K 8K 80K L x1x1 x2x2 R. Bonomi TE-MSC-CMI SPL Seminar 2012

(D) He vapour cooling 300K 4.5K Q in g/s L attenuation factor R. Bonomi TE-MSC-CMI SPL Seminar 2012

SCM instrumentation

Burning coolant R. Bonomi TE-MSC-CMI SPL Seminar 2012