What can we learn from High-z Passive Galaxies ? Andrea Cimatti Università di Bologna – Dipartimento di Astronomia.

Slides:



Advertisements
Similar presentations
The Role of Dissipation in Galaxy Mergers Sadegh Khochfar University of Oxford.
Advertisements

Formation of Globular Clusters in  CDM Cosmology Oleg Gnedin (University of Michigan)
1 Mechanisms of Galaxy Evolution Things that happen to galaxies… Galaxy merging Things that happen to galaxies… Galaxy merging.
Forming Early-type galaxies in  CDM simulations Peter Johansson University Observatory Munich Santa Cruz Galaxy Workshop 2010 Santa Cruz, August 17 th,
Kevin Bundy, Caltech The Mass Assembly History of Field Galaxies: Detection of an Evolving Mass Limit for Star-Forming Galaxies Kevin Bundy R. S. Ellis,
P. Saracco 1 M. Longhetti 1, A. Gargiulo 1 1 INAF – Osservatorio Astronomico di Brera, Milano Italy Galaxy Evolution and Environment - Bologna, November.
Lecture #4 Observational facts Olivier Le Fèvre – LAM Cosmology Summer School 2014.
Life Before the Fall: Group Galaxy Evolution Prior to Cluster Assembly Anthony Gonzalez (Florida) Kim-Vy Tran (CfA) Michelle Conbere (Florida) Dennis Zaritsky.
Searching for massive galaxy progenitors with GMASS (Galaxy Mass Assembly ultradeep Spectroscopic Survey) (a progress report) Andrea Cimatti (INAF-Arcetri)
The two phases of massive galaxy formation Thorsten Naab MPA, Garching UCSC, August, 2010.
Massive galaxies in massive datasets M. Bernardi, J. Hyde and E. Tundo M. Bernardi, J. Hyde and E. Tundo University of Pennsylvania.
Dark Matter and Galaxy Formation Section 4: Semi-Analytic Models of Galaxy Formation Joel R. Primack 2009, eprint arXiv: Presented by: Michael.
Primeval Starbursting Galaxies: Presentation of “Lyman-Break Galaxies” by Mauro Giavalisco Jean P. Walker Rutgers University.
Evolution of Galaxy Properties from High Redshift to Today.
THE MODERATELY LARGE SCALE STRUCTURE OF QUASARS
SFR and COSMOS Bahram Mobasher + the COSMOS Team.
Bruno Henriques Claudia Maraston & the Marie Curie Excellence Team Guinevere Kauffmann, Pierluigi Monaco Evolution of the Near-Infrared Emission from Galaxies:
C. Halliday, A. Cimatti, J. Kurk, M. Bolzonella, E. Daddi, M. Mignoli, P. Cassata, M. Dickinson, A. Franceschini, B. Lanzoni, C. Mancini, L. Pozzetti,
Star Formation Rate and Neutral Gas Content as a Function of Redshift and Environment Collaborators: Mike Pracy, Jayaram Chengalur, Frank Briggs, Matthew.
Cosmological formation of elliptical galaxies * Thorsten Naab & Jeremiah P. Ostriker (Munich, Princeton) T.Naab (USM), P. Johannson (USM), J.P. Ostriker.
Establishing the Connection Between Quenching and AGN MGCT II November, 2006 Kevin Bundy (U. of Toronto) Caltech/Palomar: R. Ellis, C. Conselice Chandra:
Galactic Metamorphoses: Role of Structure Christopher J. Conselice.
Coevolution of black holes and galaxies at high redshift David M Alexander (Durham)
Past, Present and Future Star Formation in High Redshift Radio Galaxies Nick Seymour (MSSL/UCL) 22 nd Nov Powerful Radio Galaxies.
Culling K-band Luminous, Massive Star Forming Galaxies at z>2 X.Kong, M.Onodera, C.Ikuta (NAOJ),K.Ohta (Kyoto), N.Tamura (Durham),A.Renzini, E.Daddi (ESO),
The Building Up of the Black Hole Mass- Stellar Mass Relation Alessandra Lamastra collaborators: Nicola Menci 1, Roberto Maiolino 1, Fabrizio Fiore 1,
Conference “Summary” Alice Shapley (Princeton). Overview Multitude of new observational, multi-wavelength results on massive galaxies from z~0 to z>5:
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
The co-evolution of massive ellipticals & their black holes Thorsten Naab University Observatory, Munich 8 th Sino-German Workshop on Galaxy Formation.
KASI Galaxy Evolution Journal Club The Morphology of Passively Evolving Galaxies at z~2 from Hubble Space Telescope/WFC3 Deep Imaging in the Hubble Ultra.
Scaling relations of spheroids over cosmic time: Tommaso Treu (UCSB)
The coordinated growth of stars, haloes and large-scale structure since z=1 Michael Balogh Department of Physics and Astronomy University of Waterloo.
The Evolution of Groups and Clusters " Richard Bower, ICC, Durham " With thanks to the collaborators that have shaped my views Mike Balogh, Dave Wilman,
“Nature and Descendants of Sub-mm and Lyman-break Galaxies in Lambda-CDM” Juan Esteban González Collaborators: Cedric Lacey, Carlton Baugh, Carlos Frenk,
Reconstructing the formation of massive early-type galaxies from their SHARDS Pablo G. Pérez-González SHARDS Team: A. Cava, G. Barro, M. Balcells, N. Cardiel,
With: V. Smolcic, A. Karim,, B. Magnelli, A.Zirm, M. Michalowski, P. Capak, K. Sheth, K. Schawinski, S. Wuyts, D. Sanders, A. Man, D. Lutz, J. Staguhn,
Naoyuki Tamura (University of Durham) The Universe at Redshifts from 1 to 2 for Early-Type Galaxies ~ Unveiling “Build-up Era” with FMOS ~
Modeling the dependence of galaxy clustering on stellar mass and SEDs Lan Wang Collaborators: Guinevere Kauffmann (MPA) Cheng Li (MPA/SHAO, USTC) Gabriella.
Keck spectroscopy and dynamical masses for a large sample of 1 < z < 1.6 passive red galaxies Sirio Belli with Andrew B. Newman and Richard S. Ellis ApJ,
The Star Formation Histories of Red Sequence Galaxies Mike Hudson U. Waterloo / IAP Steve Allanson (Waterloo) Allanson, MH et al 09, ApJ 702, 1275 Russell.
How do galaxies accrete their mass? Quiescent and star - forming massive galaxies at high z Paola Santini Roman Young Researchers Meeting 2009 July 21.
Z-FOURGE - the FourStar Galaxy Evolution Survey Status Report at the 1.3-year mark.
Cosmos Survey PI Scoville HST 590 orbits I-band 2 deg. 2 !
Models & Observations galaxy clusters Gabriella De Lucia Max-Planck Institut für Astrophysik Ringberg - October 28, 2005.
Assembly of Massive Elliptical Galaxies
Gas Accretion and Secular Processes 1  How much mass assembled in mergers?  How much through gas accretion and secular evolution? Keres et al 2005, Dekel.
Clustering of BzK-selected galaxies in the COSMOS field Xu KONG collaborators : A. Renzini, E. Daddi, N. Arimoto, A. Cimatti , COSMOS.
Clustering and dusty high-z galaxies Emanuele Daddi ESO-Garching (  NOAO-Tucson) Properties of K-selected z=2 galaxies (K20/GOODS/other surveys)  dusty.
A Wide Area Survey for High-Redshift Massive Galaxies Number Counts and Clustering of BzKs and EROs X.Kong, M.Onodera, C.Ikuta (NAOJ), K.Ohta (Kyoto),
How do galaxies accrete their mass? Quiescent and star - forming massive galaxies at high z Paola Santini THE ORIGIN OF GALAXIES: LESSONS FROM THE DISTANT.
Formation and evolution of early-type galaxies Pieter van Dokkum (Yale)
SWIRE view on the "Passive Universe": Studying the evolutionary mass function and clustering of galaxies with the SIRTF Wide-Area IR Extragalactic Survey.
Evidence for a Population of Massive Evolved Galaxies at z > 6.5 Bahram Mobasher M.Dickinson NOAO H. Ferguson STScI M. Giavalisco, M. Stiavelli STScI Alvio.
How are galaxies influenced by their environment? rachel somerville STScI Predictions & insights from hierarchical models with thanks to Eric Bell the.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Star Forming Proto-Elliptical z>2 ? N.Arimoto (NAOJ) Subaru/Sup-Cam C.Ikuta (NAOJ) X.Kong (NAOJ) M.Onodera (Tokyo) K.Ohta (Kyoto) N.Tamura (Durham)
The cosmic evolution of star formation and metallicity over the last 13 billion years (an observational perspective) Andrea Cimatti (INAF - Osservatorio.
The Progenitors of the Compact Early- Type Galaxies at High Redshift or, the evolution from z=∞ to z≈2 Mauro Giavalisco University of Massachusetts Amherst.
Study of Proto-clusters by Cosmological Simulation Tamon SUWA, Asao HABE (Hokkaido Univ.) Kohji YOSHIKAWA (Tokyo Univ.)
What is EVLA? Giant steps to the SKA-high ParameterVLAEVLAFactor Point Source Sensitivity (1- , 12 hr.)10  Jy1  Jy 10 Maximum BW in each polarization0.1.
The Genesis and Star Formation Histories of Massive Galaxies Sept 27, 2004 P. J. McCarthy MGCT Carnegie Observatories.
Bologna The size evolution of early-type galaxies since z=2 P. Saracco 1, M. Longhetti 1, with the contribution of S. Andreon 1, A. Mignano.
Lightcones for Munich Galaxies Bruno Henriques. Outline 1. Model to data - stellar populations and photometry 2. Model to data - from snapshots to lightcones.
Massive galaxies in massive datasets M. Bernardi (U. Penn)
Galactic Astronomy 銀河物理学特論 I Lecture 3-5: Evolution of dynamical structure of galaxies Seminar: Forster Schreiber et al. 2009, ApJ, 706, 1364 Lecture:
Observing the formation and evolution of massive galaxies
Galaxy Populations in the Most Distant Clusters
Nobunari Kashikawa (National Astronomical Observatory of Japan)
The Presence of Massive Galaxies at z>5
A Population of Old and Massive Galaxies at z > 5
Presentation transcript:

What can we learn from High-z Passive Galaxies ? Andrea Cimatti Università di Bologna – Dipartimento di Astronomia

Why Distant Early-type galaxies ? z ≈ 0 z > 2 0<z<2 The link between ETGs at z ≈ 0 and their high-z progenitors

Dunlop et al. 1996, Spinrad et al A substantial population of z>1 passive ETGs found with NIR-selected surveys (e.g. K20, GDDS, MUNICS, FIRES, MUSYC, GOODS, COSMOS, …) z=1.55 age ≈ 3.5 Gyr

How many at z > 1 ?

Passive BzKs 1.4 < z < 2.5 (Kong et al. 2005) DRG number density (z>2) (Marchesini et al. 2007) Fraction of passive ETGs in a stellar mass-selected complete sample (logM*>10.1 Msun) (GMASS Project; Cassata et al. 2008)

Stellar content and masses ?

Optical spectroscopy Cimatti et al Coadded spectrum of 13 ETGs at 1.3<z<2 ESO VLT GMASS project

z ≈ 1.2 (Matsuoka et al. 2008) z ≈ 2 (Kriek et al. 2007) z ≈ 1.2 – 2 Longhetti et al NIR spectroscopy J H K

Constraints from spectral/SED analysis (0.5<z<2)  Stars : - 1 – 4 Gyr  1.5<z(form)<4 = f(mass) (downsizing) - τ ≈ 0.1 – 0.3 Gyr = f(mass) - Metallicity : Z ≈ 1 x Z(Sun) ?  Stellar masses : logM stars ≈ 10.5 – 12 Msun (Chabrier IMF) (M stars ≈ M dyn to z ≈ 1.2)  Dust extinction : A V ≈ 0  Δt(cluster – field) : ≈ 0 (≈1) Gyr for M>(M<)10 11 Msun  Consistent results with ETGs at z ≈ 0 and FP(z) to z ≈ 1 Cimatti et al ; Glazebrook et al. 2004; McCarthy et al. 2004; Daddi et al. 2005; Saracco et al. 2005; Treu et al. 2005, di Serego Alighieri et al. 2005, van der Wel et al. 2005, Longhetti et al. 2005, Kriek et al. 2006; Papovich et al. 2006, Matsuoka et al. 2008, Gobat et al. 2008; Rettura et al. 2008, Bernardi et al – 2007, Heavens et al. 2004, Kuntschner et al. 2002; Thomas et al. 2005, Jimenez et al … + MANY OTHERS

Cosmology with ETGs ?

dz/dt  Dark Energy EOS (w) N≈10 5 Moresco et al (Jimenez & Loeb 2002; Jimenez et al. 2003)

Early-type galaxies at z > 3 ?

Typically : 3 < z < 7(?) 10.8 < log M* < 11.5 Msun Ages ~ 0.2 – 0.8 Gyr A V ~ 0 – 1 Mobasher et al Dunlop et al Brammer et al Rodighiero et al Wiklind et al Mancini et al Example of a high-z ETG photometric candidate (Mancini et al. 2008)

Internal Structure Evolution ?

- ETGs at z>1 are ≈2-3x smaller and ≈10-30x denser than at z ≈ 0 - How do high-z ETG increase their size to z ≈ 0 ? Dry merging ? - Only SMGs at z>2 have similar densities (evolutionary link ?) - Or … are the small sizes due to an observational bias ? (Mancini et al. 2009) 1.3 < z < 2.5 Cimatti et al van der Wel et al The size / density problem

12 “secure” pBzK with K<17.7 (Vega) – SSP SEDs, no MIPS Msun (Chabrier IMF, M05) High concentration + large low surface brightness halo Are ETGs at z>1 really small ? Mancini et al  80% have R e ≈ 5 – 11 kpc, n ≈ 2 – 8  Most of them follow the local n – R e relation  Lower masses  lower SNR  Missing the faint halos ? COSMOS HST+ACS (I-band)

Internal velocity dispersion of ETGs at z > 1.4 Work in progress … (AC, Cappellari, di Serego Alighieri et al.) observed template If the superdense ETGs have the same dynamical structure of z=0 ETGs and belong to the same homologous family, given their M * and R e, we expect high velocity dispersions σ vel

Where do they live ?

1.600 < z < N = 42 Overdensity : 6 ± 3 σ ≈ 450 km s -1 If relaxed : R 200 = 0.5 Mpc M vir = 9 x Msun Overdensity and volume (Steidel et al method) : M ≈ 5 x Msun (lower limit : only a fractionof the structure falls in the GMASS field) z = 1.61

Main features : - z > z(highest-z clusters) - it contains ETGs (vs LBG and LAE overdensities) - 3 ETGs within 100 kpc : dry merging ? (compare with z=1.5 structure of McCarthy et a. 2007) - Irregular/filamentary : not yet relaxed - No diffuse X-rays : L X < 3 x erg s -1 Are we witnessing the assembly of a cluster ? 1 Mpc

Galaxy properties: - more ETGs - redder - 2x older galaxies - more massive - lower SFR and SSFR than in the “field” at 1.4<z<1.8

Two slides for the discussion time …

Massive thick disk Gas-rich major merger Powerful starburst (e.g. SMGs at z≈2-4) Smooth accretion Feedback (AGN ?) Star formation quenching Superdense compact remnant (z ≈ 1-2) Size growth (minor and/or major, wet and/or dry merging, smooth accretion) Massive ETGs reach most of completion at z ≈ 0.7 Gas exhaustion ? ?

Believable Results  Massive ETGs (M > Msun) mostly assembled at z ~ 0.7  Lower mass ETGs continue to assemble at 0 < z < 0.7 (downsizing)  The Fundamental Plane to z ≈ 1 shows a mass-dependent evolution  The bulk of stars is old, formed in short-lived bursts at z > 2  Spectroscopically identified old/massive ETGs exist up to z ~ 2.5 Open Questions  ETG evolution at z > 1 : N(z), luminosity and mass functions  Stellar metallicity and metallicity evolution  Small sizes at z > 1, dynamical masses, σ vel, and growth mechanism  Physics of ETG formation, feedback and mass assembly  Old/massive ETG photometric candidates at z>3  Comparison with model predictions