Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_1
Shanxi University Atomic Physics An apparatus suitable for observation of the Zeeman effect.
Shanxi University Atomic Physics
Fig. 6.11
Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_4
Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_5
Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_6
Shanxi University Atomic Physics 6.4 Measurement of hyperfine structure_7 Doppler broadening is much less of a problem in direct measurements of the separation between hyperfine levels with microwave techniques (at frequencies of gigahertz), or the even smaller splitting of the Zeeman sub-levels that correspond to radio-frequency transitions. An example of a radio-frequency and microwave spectroscopy technique is outlined in the next section.
Shanxi University Atomic Physics The atomic-beam technique_1
Shanxi University Atomic Physics The atomic-beam technique_2
Shanxi University Atomic Physics The atomic-beam technique_3
Shanxi University Atomic Physics The atomic-beam technique_4
Shanxi University Atomic Physics The atomic-beam technique_5 Fig (a)
Shanxi University Atomic Physics Fig (b) (c) (d)
Shanxi University Atomic Physics The atomic-beam technique_7
Shanxi University Atomic Physics The atomic-beam technique_8 Fig. 6.15
Shanxi University Atomic Physics The atomic-beam technique_9
Shanxi University Atomic Physics The atomic-beam technique_10
Shanxi University Atomic Physics The atomic-beam technique_11
Shanxi University Atomic Physics The atomic-beam technique_12
Shanxi University Atomic Physics Atomic clock_1
Shanxi University Atomic Physics Atomic clock_2
Shanxi University Atomic Physics Atomic clock_3
Shanxi University Atomic Physics Atomic clock_4
Shanxi University Atomic Physics Complementarity: The measurement of the Cs fine structure Saturation absorption spectrum Selective Reflection spectrum Ultra-thin film spectrum Ultra-cold atom
Shanxi University Atomic Physics Selective Reflection spectrum Experimental setup
Shanxi University Atomic Physics Experimental result
Shanxi University Atomic Physics (a) 0mW (b) 8.3mW (c) 38mW (d)160mW (e)500mW I C =22mW (a') -151MHz (b') 0MHz (c') 128MHz (d') 300MHz
Shanxi University Atomic Physics Saturation absorption spectrum C34 T5 T4 T3 C35 C45 The saturated absorption spectroscopy of Cs atom from 6S 1/2 (F=4) to 6P 3/2.
Shanxi University Atomic Physics Ultra-thin film spectrum
Shanxi University Atomic Physics 薄池透射谱 (b) 和 (b’),(a) 和 (a’) 为对应的饱和吸收谱. Experimental results(1)
Shanxi University Atomic Physics 薄池透射谱 (a) 与对应鉴频 曲线 (b). 锁频前后误差线比较 Experimental results(2)
Shanxi University Atomic Physics Ultra-cold atom experimental setup Z λ/2 Lens λ/2 λ/4 Main laser beam Repumping laser beam The experimental setup. Ion pump Cs
Shanxi University Atomic Physics The Doppler free spectrum in cold Cs atom of the transition 6S 1/2 (F=4) to 6P 3/2 (F´=3, 4 , 5). Spectrum of ultra-cold atom Nonlinear spectrum
Shanxi University Atomic Physics Exercises 6.1 — 6.8, 6.11, 6.13