PMN07 Blaubeuren 01.07. - 05.07.2007 Segmented germanium detectors in 0νββ-decay experiments Kevin Kröninger (Max-Planck-Institut für Physik, München)

Slides:



Advertisements
Similar presentations
Towards a Pulseshape Simulation / Analysis Kevin Kröninger, MPI für Physik GERDA Collaboration Meeting, DUBNA, 06/27 – 06/29/2005.
Advertisements

Dante Nakazawa with Prof. Juan Collar
Advanced GAmma Tracking Array
GEANT4 Simulations of TIGRESS
Key features: special electric field configuration usage of mirror pulses induced on contacts which do not collect charge Surface events and i nactive.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
Pulse Shape Analysis with Segmented Germanium Detector Xiang Liu, Max-Planck-Institut für Physik 1.Motivation 2.Pulse properties 3.Analysis procedure 4.Some.
September 14, 2007Hardy Simgen, TAUP 2007 / Sendai1 Status of the GERDA experiment Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg on behalf.
AGATA Introduction John Simpson Nuclear Physics Group.
M. Di Marco, P. Peiffer, S. Schönert
Results from M. Di Marco, P. Peiffer, S. Schönert Thanks to Davide Franco and Marik Barnabe Heider Gerda collaboration meeting, Tübingen 9th-11th.
WP2 Background simulations Outline Execution plan for the third year Progress of the work Activities and news.
GERDA: GERmanium Detector Array
Study of e + e  collisions with a hard initial state photon at BaBar Michel Davier (LAL-Orsay) for the BaBar collaboration TM.
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
GERmanium Detector Array – a Search for Neutrinoless Double Beta Decay X. Liu - MPI für Physik, München Symposium – symmetries and phases in the universe,
Activity report of TG10 L. Pandola (LNGS) for the TG10 group Gerda Collaboration Meeting, February 3-5, 2005 (simulations and background studies)
CRESST Cryogenic Rare Event Search with Superconducting Thermometers Max-Planck-Institut für Physik University of Oxford Technische Universität München.
Temperature Dependence of the Crystal Properties of 18-fold Segmented HPGe Detector Allen Caldwell, Daniel Lenz, Jing Liu, Xiang Liu, Bela Majorovits,
Crossed Channel Compton Scattering Michael Düren and George Serbanut, II. Phys. Institut, - some remarks on cross sections and background processes  
Task Group 2 Iris Abt, Michael Altmann, Kevin Kroeninger, Bela Majorovits, Franz Stelzer, Xiang Liu 1.Detector Development 2.Suspension & Cabling 3.MC.
GERMANIUM GAMMA -RAY DETECTORS BY BAYAN YOUSEF JARADAT Phys.641 Nuclear Physics 1 First Semester 2010/2011 PROF. NIDAL ERSHAIDAT.
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Sensitivity to half life of 0νββ decay (left) and to effective Majorana neutrino mass (right) of an experiment as a function of exposure for different.
Octavian Sima Physics Department Bucharest University
Planned Transregional Collaborative Research Center TR27: Neutrinos and Beyond Project A4: Development of segmented germanium detectors for the investigation.
The European Future of Dark Matter Searches with Cryogenic Detectors H Kraus University of Oxford EURECA.
Status of Surface Sensitive Bolometers University of Insubria – Como, Italy INFN – Milano, Italy Prague, Chiara Salvioni.
Monte Carlo Studies on Possible Calibration Sources Kevin Kröninger, MPI für Physik GERDA Collaboration Meeting, DUBNA, 06/27 – 06/29/2005.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
What is MaGe? MJ outputGERDA output MaGe is a Monte Carlo simulation package dedicated to experiments searching for 0 2  decay in 76 Ge. Created by the.
PRESORT OF THE DATA OF THE COLOGNE TEST EXPERIMENT ● Quality and integrity of data ● Detector numbering and positions ● Calibrations and gain stability.
Half Day IoP Meeting: Neutrinoless Double Beta Decay, University College London, Great Britain The GERDA Experiment at Gran Sasso Grzegorz Zuzel.
Nov Beam Catcher in KOPIO (H. Mikata Kaon mini worksyop1 Beam Catcher in the KOPIO experiment Hideki Morii (Kyoto Univ.) for the KOPIO.
VIeme rencontres du Vietnam
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
Experimental Search for the Decay K. Mizouchi (Kyoto University) (1) Physics Motivation (2) Detector (3) Selection Criteria (4) Branching Ratio (5) Background.
Ge Test-stands at MPI Munich Xiang Liu 1.General 2.Crystals, Test-stands & Results 3.Outlook.
Development of a Segmented Planar Germanium Imaging Detector
The GERDA experiment L. Pandola INFN, Gran Sasso National Laboratory for the GERDA Collaboration WIN2009, Perugia, September 17 th 2009.
MaGe framework for Monte Carlo simulations MaGe is a Geant4-based Monte Carlo simulation package dedicated to experiments searching for 0 2  decay of.
MaGe: a Monte Carlo framework for the GERDA and Majorana experiments Luciano Pandola INFN, Laboratori Nazionali del Gran Sasso for the MaGe development.
Experiment [1] M. Di Marco, P. Peiffer, S. Schonert, LArGe: Background suppression using liquid argon scintillation for 0νββ - decay search with enriched.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
Progress on F  with the KLOE experiment (untagged) Federico Nguyen Università Roma TRE February 27 th 2006.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
GERDA – a Search for Neutrinoless Double Beta Decay MPI für Physik, München Neutrinoless double beta decay and the GERDA experimentThe detector array and.
M.Altmann, GERDA Status Report SNOLAB Workshop IV, Investigating Neutrinoless Double Beta Decay Status of the GERDA Experiment Michael Altmann.
PoGOLiteMC_ ppt 1 Updated MC Study of PoGOLite Trigger Rate/BG January 30, 2007 Tsunefumi Mizuno (Hiroshima Univ.)
Phase I: Use available 76 Ge diodes from Heidelberg- Moscow and IGEX experiments (~18 kg). Scrutinize with high siginificance current evidence. Phase II:
1 Exotic States 2005 E.C. Aschenauer The search for Pentaquarks at on behalf of the HERMES Collaboration E.C. Aschenauer DESY.
Sep. 22, 2011 Seoul National University Jae Keum Lee KIMS Background 1 China-Korea Workshop 2011 September 22-23, 2011.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
November 19, 2007Hardy Simgen, IDEA-Meeting Paris Status of the GERDA experiment Hardy Simgen Max-Planck-Institut für Kernphysik Heidelberg on behalf.
MPI für Physik, Fachbeirat, Béla Majorovits The GERDA experiment Béla Majorovits.
Surface Contamination Simulations with MaGe Rob Johnson Center for Experimental Nuclear Physics and Astrophysics University of Washington 15 February,
SIMULATION OF BACKGROUND REDUCTION TECHNIQUES FOR Ge DBD DETECTORS Héctor Gómez Maluenda. University of Zaragoza. GERDA/Majorana MC Meeting.
Test of 1kg point contact detector and CDEX-1 Data Analysis Process Wu Yucheng CDEX collaboration Development of High Purity Germanium Detector.
Report (2) on JPARC/MLF-12B025 Gd(n,  ) experiment TIT, Jan.13, 2014 For MLF-12B025 Collaboration (Okayama and JAEA): Outline 1.Motivation.
Towards pulse shape calculation and analysis for the GERDA experiment Kevin Kröninger, MPI für Physik International School of Nuclear Physics, Erice 2005.
From Edelweiss I to Edelweiss II
Overview of GERDA simulation activities with MaGe
Prompt Gamma Activation Analysis on 76Ge
Jing Liu Kavli IPMU, University of Tokyo 8 Apr. 2013, Tuebingen
GERDA Collaboration Meeting,
Very preliminary study of the random background for the BiPo detector (PhoSwich configuration) Work done by Jonathan Ferracci.
Pre-Test-stands at MPI Munich
GERDA Test Stands for Segmented Germanium Detectors
Presentation transcript:

PMN07 Blaubeuren Segmented germanium detectors in 0νββ-decay experiments Kevin Kröninger (Max-Planck-Institut für Physik, München) Outline: Segmentation in 0νββ-decay experiments Example 1: photons vs. electrons Example 2: neutron scattering Example 3: 2νββ-decay into excited states Example 4: alpha veto Summary and outlook

Kevin Kröninger PMN07 Blaubeuren, – Segmentation in 0νββ-decay experiments Germanium detectors can be segmented Segmentation works for both n- and p-type detectors State-of-the-art: segmentation schemes with up to 36 segments for a cylindrical geometry (e.g. AGATA) In 0νββ-decay experiments: Information about event topology → Identification of final states → Identification of physics processes → Rejection of background In particular: photons vs. electron identification

Kevin Kröninger PMN07 Blaubeuren, – Example 1: electrons vs. photons I 0νββ-decay has two electrons (only) in the final state Sum of the kinetic energies at Q-value (2 039 keV for 76 Ge) Electrons of O(1) MeV have a range of ~ 1 mm in Ge Single-site events Photons with MeV-energies mostly Compton-scatter Range of photons O(1-5) cm in germanium Multi-site events Aim: Distinguish between single-site (electrons) and multi-site events (photons) Range log(R [mm]) PSASegm. Single crystal

Kevin Kröninger PMN07 Blaubeuren, – Example 1: electrons vs. photons II 18-fold segmented n-type detector Pre-amplifiers and filters 60 l dewar with lN 2 Pre-amplifiers and filters I. Abt et al. NIMA 577 (2007) 574

Kevin Kröninger PMN07 Blaubeuren, – Example 1: electrons vs. photons II 18-fold segmented n-type detector 6-fold segmented in azimuthal angle 3-fold segment in height I. Abt et al. NIMA 577 (2007) 574

Kevin Kröninger PMN07 Blaubeuren, – Example 1: electrons vs. photons III Core electrode spectrum ( 60 Co) Data and MC agree (dev. <5%) Pile-up, CCE, etc. not in MC Substructure due to drift anisotropy of charge carriers Effective model in MC Channel ID I. Abt et al. arxiv:nucl-ex/

Kevin Kröninger PMN07 Blaubeuren, – Example 1: electrons vs. photons IV Suppression factor SF L = N (all) / N (single segment) Data and MC agree (dev. <5%) Add segment energies to study effective segmentation 18-fold segmentation best I. Abt et al. arxiv:nucl-ex/

Kevin Kröninger PMN07 Blaubeuren, – Example 1: electrons vs. photons V PartSourceSF C SF S DetectorCo ± ± 1.0 Ge ± ± 1.4 HolderTl ± ± 0.9 Bi ± ± 1.4 Co ± ± 27 ElectronicsTl ± ± 0.6 GERDA expectation: 21 detectors with 18-fold segmentation Monte Carlo study: segmentation improves background rejection by up to an order of magnitude, depending on source I. Abt et al. NIMA 570 (2007) 479

Study AmBe neutron source with 18-fold prototype detector Segmentation allows to observe recoil spectrum Example: inelastic scattering : Kevin Kröninger PMN07 Blaubeuren, – Example 2: neutron scattering 74 Ge(n, n‘ γ ) n recoiling nucleus γ Event selection: N seg = 2 E any = 596 keV (select photon)

Study AmBe neutron source with 18-fold prototype detector Segmentation allows to observe recoil spectrum Kevin Kröninger PMN07 Blaubeuren, – Example 2: neutron scattering 74 Ge(n, n‘ γ ) require N seg = 2 and E any = 596 keV 208 Tl 214 Bi E seg2 [keV] to be published

Kevin Kröninger PMN07 Blaubeuren, – Example 3: 2νββ into excited states I Double beta-decay of 76 Ge can populate excited states of 76 Se Observation could help check reliability of nuclear models Signature for decay: continous electron spectrum up to 917 keV photon of 559 keV photon of 563 keV Segmentation can be used to identify the two photons and the electrons Background about 3 events / (kg·y) KK, L. Pandola, V. Tretyak arxiv:nucl-ex/

Kevin Kröninger PMN07 Blaubeuren, – Example 3: 2νββ into excited states II GERDA: Monte Carlo simulation of the decay and possible background contributions ( 60 Co, 68 Ge, 2νββ,...) Sensitivity (for 100 kg·y): Two orders of magnitude above current limit of T 1/2 > 6.2·10 21 y Allows testing of predictions with T 1/2 ~ 7.5·10 21 y – 3.1·10 23 y Detector arrayT 1/2 limit (90% prob.) 21 unseg. detectors2.2·10 23 y fold segm. det.5.6·10 23 y KK, L. Pandola, V. Tretyak arxiv:nucl-ex/

Evidence for surface contaminations in previous experiments Alpha decays of 210 Pb daughter can cause energy deposition in the crystal For n-type detectors: mantle surface has a thin dead layer → energy deposit > 2 MeV But: top and bottom dead layer have “critical” thickness Add two thin segments on top and bottom as alpha-veto Feasibility study with Canberra France ongoing Kevin Kröninger PMN07 Blaubeuren, – Example 4: alpha veto veto

Kevin Kröninger PMN07 Blaubeuren, – Summary and outlook Segmented germanium detectors are valuable tool for topological information Prototype detectors (n-type and p-type) work well Monte Carlo predictions agree with data For GERDA: background rejection works reliably well described by Monte Carlo now: background expected to not be dominated by photons Choice of segmentation depends on physics process Rich experimental program ongoing at the MPI für Physik, Munich