Main Activities and News from LHC e-Cloud Simulations Frank Zimmermann ICE Meeting 8 June 2011.

Slides:



Advertisements
Similar presentations
Heat load due to e-cloud in the HL-LHC triplets G. Iadarola, G. Rumolo 19th HiLumi WP2 Task Leader Meeting - 18 October 2013 Many thanks to: H.Bartosik,
Advertisements

Electron-cloud instability in the CLIC damping ring for positrons H. Bartosik, G. Iadarola, Y. Papaphilippou, G. Rumolo TWIICE workshop, TWIICE.
March 14-15, 2007ECloud Feedback, IUCF1 Electron-Cloud Effects in Fermilab Booster K.Y. Ng Fermilab Electron-Cloud Feedback Workshop IUCF, Indiana March.
RedOffice.com Presentation templates Slide No. 1 RFA Detector Data of Electron Cloud Build-up and Simulations Eric Wilkinson Mentor: Jim Crittenden Cornell.
E-Cloud Effects in the Proposed CERN PS2 Synchrotron M. Venturini, M. Furman, and J-L Vay (LBNL) ECLOUD10 Workshshop, Oct Cornell University Work.
LHC e - cloud simulations C.Octavio Domínguez, Giovanni Rumolo, Frank Zimmermann 17 th January e - cloud simulations.
R. Cimino COULOMB’05, Senigallia, Sept 15, Surface related properties as an essential ingredient to e-cloud simulations. The problem of input parameters:
MD#2 News & Plan Tue – Wed (19. – 20.6.) DayTimeMDEiCMP Tue06: GeV  4 TeV: Ramp for chromaticity - missed A 08:00Ramp down 10: GeV: Large.
E-CLOUD VACUUM OBSERVATIONS AND FORECAST IN THE LHC Vacuum Surfaces Coatings Group 03/07/2011 G. Bregliozzi On behalf of VSC Group with the contributions.
Giovanni Rumolo, G. Iadarola and O. Dominguez in LHC Beam Operation workshop - Evian 2011, 13 December 2011 For all LHC data shown (or referred to) in.
Electron Cloud Studies for Tevatron and Main Injector Xiaolong Zhang AD/Tevatron, Fermilab.
25-26 June, 2009 CesrTA Workshop CTA09 Electron Cloud Single-Bunch Instability Modeling using CMAD M. Pivi CesrTA CTA09 Workshop June 2009.
AB-ABP/LHC Injector Synchrotrons Section CERN, Giovanni Rumolo 1 Final results of the E-Cloud Instability MDs at the SPS (26 and 55 GeV/c) G.
LHC Scrubbing Runs Overview H. Bartosik, G. Iadarola, K. Li, L. Mether, A. Romano, G. Rumolo, M. Schenk, G. Arduini ABP information meeting 03/09/2015.
Electron-Cloud Activities for LHC Frank Zimmermann ICE Meeting,
G. Rumolo, G. Iadarola, H. Bartosik, G. Arduini for CMAC#6, 16 August 2012 Many thanks to: V. Baglin, G. Bregliozzi, S. Claudet, O. Dominguez, J. Esteban-
History and motivation for a high harmonic RF system in LHC E. Shaposhnikova With input from T. Argyropoulos, J.E. Muller and all participants.
Fast Ion Instability Studies in ILC Damping Ring Guoxing Xia DESY ILCDR07 meeting, Frascati, Mar. 5~7, 2007.
Parameter studies of the e - cloud build up (update) C.Octavio Domínguez, Frank Zimmermann 28 th April e - cloud meeting.
U. IrisoECLOUD’04 – 21 April ECLOUD’04 April , Napa, CA Use of Maps for exploration of Electron Cloud parameter space Ubaldo Iriso and.
Fast scrubbing optimization: e- cloud maps C. Octavio Domínguez Thanks to G. Iadarola, G. Rumolo, F. Zimmermann 15 February e - cloud meeting.
LSWG day: Impedance and beam induced heating Nicolas Mounet *, Daria Atapovych, Nicolò Biancacci, Elias Métral, Tatiana Pieloni, Stefano Redaelli, Benoit.
Elias Métral, LHC Beam Commissioning Working Group meeting, 08/06/2010 /191 SINGLE-BUNCH INSTABILITY STUDIES IN THE LHC AT 3.5 TeV/c Elias Métral, N. Mounet.
Production of bunch doublets for scrubbing of the LHC J. Esteban Muller (simulations), E. Shaposhnikova 3 December 2013 LBOC Thanks to H. Bartosik, T.
Physics of electron cloud build up Principle of the multi-bunch multipacting. No need to be on resonance, wide ranges of parameters allow for the electron.
Improved electron cloud build-up simulations with PyECLOUD G. Iadarola (1),(2), G. Rumolo (1) (1) CERN, Geneva, Switzerland, (2) Università di Napoli “Federico.
LHC Scrubbing Runs J.M. Jimenez On behalf of the Electron Cloud Study Team, a Collaboration between AT and AB Departments.
Cesr-TA Simulations: Overview and Status G. Dugan, Cornell University LCWS-08.
Progress on electron cloud studies for HL-LHC A. Axford, G. Iadarola, A. Romano, G. Rumolo Acknowledgments: R. de Maria, R. Tomás HL-LHC WP2 Task Leader.
Simulation of multipacting thresholds G. Iadarola and A. Romano on behalf of the LIU-SPS e-cloud team LIU SPS scrubbing review, 8 September, 2015.
Elias Métral, ICFA-HB2004, Bensheim, Germany, 18-22/10/ E. Métral TRANSVERSE MODE-COUPLING INSTABILITY IN THE CERN SUPER PROTON SYNCHROTRON G. Arduini,
Highlights from the ILCDR08 Workshop (Cornell, 8-11 July 2008) report by S. Calatroni and G. Rumolo, in CLIC Meeting Goals of the workshop:
Summary of the CERN-GSI Workshop on Electron Cloud G. Rumolo in ABP-ICE Meeting 16/03/2011.
Prepared by M. Jimenez AT Dept / Vacuum Group, ECloud’04 Future Needs and Future Directions Maximizing the LHC Performances J.M. Jimenez …when Nature persists.
Elias Métral, LHC Beam Commissioning Working Group meeting, 30/11/2010 /241 PRELIMINARY FINDINGS FROM INSTABILITY MEASUREMENTS DURING THE 75ns AND 50ns.
Electron cloud in Final Doublet IRENG07) ILC Interaction Region Engineering Design Workshop (IRENG07) September 17-21, 2007, SLAC Lanfa Wang.
FCC-hh: First simulations of electron cloud build-up L. Mether, G. Iadarola, G. Rumolo FCC Design meeting.
LIU-SPS e-cloud contribution to TDR Electron cloud meeting, 17/02/20141 o First draft by end of February Between 5 to 10 max pages per chapter, refer.
Ion effects in low emittance rings Giovanni Rumolo Thanks to R. Nagaoka, A. Oeftiger In CLIC Workshop 3-8 February, 2014, CERN.
Prepared by M. Jimenez AT Dept / Vacuum Group, ECloud’04 ELECTRON CLOUDS AND VACUUM EFFECTS IN THE SPS Experimental Program for 2004 J.M. Jimenez Thanks.
1 Electron clouds and vacuum pressure rise in RHIC Wolfram Fischer Thanks to M. Blaskiewicz, H. Huang, H.C. Hseuh, U. Iriso, S. Peggs, G. Rumolo, D. Trbojevic,
Comparison of stainless steel and enamel clearing electrodes E. Mahner, F. Caspers, T. Kroyer Acknowledgements to G. Arduini, H. Damerau, S. Hancock, B.
U. Iriso CELLS, Barcelona, Spain Electron Cloud Mitigation Workshop 2008 Nov st, 2008 Electron Cloud Simulations for ANKA in collaboration with.
Electron cloud study for ILC damping ring at KEKB and CESR K. Ohmi (KEK) ILC damping ring workshop KEK, Dec , 2007.
Electron Cloud Studies at DAFNE Theo Demma INFN-LNF Frascati.
Summary of ions measurements in 2015 and priorities for 2016 studies E. Shaposhnikova 3/02/2016 Based on input from H. Bartosik, T. Bohl, B. Goddard, V.
Benchmarking Headtail with e-cloud observations with LHC 25ns beam H. Bartosik, W. Höfle, G. Iadarola, Y. Papaphilippou, G. Rumolo.
Benchmarking simulations and observations at the LHC Octavio Domínguez Acknowledgments: G. Arduini, G. Bregliozzi, E. Métral, G. Rumolo, D. Schulte and.
Vacuum Cleaning / Scrubbing measurements in the LHC J.M. Jimenez on behalf of G. Arduini, V. Baglin, G. Bregliozzi, P. Chiggiato, G. Lanza, OP.
AB-ABP/LHC Injector Synchrotrons Section CERN, Giovanni Rumolo 1 Preliminary results of the E-Cloud Instability MDs at the SPS G. Rumolo, in.
Two beam instabilities in low emittance rings Lotta Mether, G.Rumolo, G.Iadarola, H.Bartosik Low Emittance Rings Workshop INFN-LNF, Frascati September.
Juan F. Esteban Müller P. Baudrenghien, T. Mastoridis, E. Shaposhnikova, D. Valuch IPAC’14 – Acknowledgements: T. Bohl, G. Iadarola, G. Rumolo,
Beam Instability in High Energy Hadron Accelerators and its Challenge for SPPC Liu Yu Dong.
e-Cloud Simulations for LHC LPA upgrade scheme
Study of the Heat Load in the LHC
E-cloud build-up & instabilities: expectations, observations and outlook Humberto Maury Cuna*, Elena Benedetto, Giovanni Rumolo, Frank Zimmermann, et al.
Longitudinal beam parameters and stability
PyECLOUD and Build Up Simulations at CERN
C.Octavio Domínguez, Frank Zimmermann
A. Al-khateeb, O. Chorniy, R. Hasse, V. Kornilov, O. Boine-F
Electron cloud and collective effects in the FCC-ee Interaction Region
MD25 ns - 14/12/2012 G. Arduini, H. Bartosik, G. Iadarola, G. Rumolo
Study of the Heat Load in the LHC
Week 46 Week 46: Machine coordinators: Roger Bailey – Gianluigi Arduini Main aims of the week: Stable beams with ions Scheduled stop for ion source refill.
Frank Zimmermann, Electron Cloud, LHC MAC 10. June 2005
Scrubbing progress - 10/12/2012
A Head-Tail Simulation Code for Electron Cloud
Electron Cloud Update US LHC Accelerator Research Program
CINVESTAV – Campus Mérida Electron Cloud Effects in the LHC
A Mapping Approach to the Electron Cloud for LHC
Presentation transcript:

Main Activities and News from LHC e-Cloud Simulations Frank Zimmermann ICE Meeting 8 June 2011

e-cloud simulation meetings 12 meetings since 26 November 2010 summary notes (thanks to Octavio) and all presentations available at ecloud-meetings/meetings2010.htm regular participants: Gianluigi Arduini, Chandra Bhat, Octavio Dominguez, Kevin Li, Humberto Maury, Elias Metral, Tatiana Pieloni, Giovanni Rumolo, Frank Zimmermann, + Alexey Burov special guests: Giuliano Franchetti, Wolfgang Hoefle, Ubaldo Iriso, Kazuhito Ohmi, EPFL team AccNet CERN-GSI e-cloud workshop,

main focus / mission understand LHC electron-cloud observations determine LHC surface parameters at different locations by benchmarking simulations and observations: – measured relative pressure rise in the straight section for different filling schemes – measured heat load in the arcs – synchronous phase shift (with RF & GSI) – (non-)observation of instabilities → constrain  e scrubbing and running scenarios for 2011 & 2012 longer-term operation modes & upgrade path beam instabilities & emittance growth due to e-cloud

example studies benchmarking surface parameters with pressure rise at LSS gauges (Octavio Dominguez) benchmarking surface parameters with arc heat load (Humberto Maury) upgrade scenarios (Humberto Maury) instability thresholds & tune shifts (Kevin Li) PS e-cloud simulations for experimental test of LHC LPA upgrade scheme (Chandra Bhat)

 max : maximum secondary electron yield  max : electron energy at which yield is maximum =  max R: reflection probability for low-energy electrons  max R  max,  max (  )! R is assumed to be independent of   plot assumes  secondary emission parameters O. Dominguez

example 2010 observation pressure increase versus batch spacing Pilot bunch + Batch 1 (12 bunches) ns + Batch 2 (24 bunches) + batch spacing (variable according to measurement) + Batch 3 (24 bunches) pressure increase related to electron wall: O. Dominguez

 max =1.86 R=0.25 O. Dominguez

Approximately same SEY but much lower R 3 rd order fit  max ~1.84 R~0.1 O. Dominguez

taking an arbitrary 10% error in the pressure 3 rd order fit O. Dominguez

1.35, 1.85, 8.85,  s taking an arbitrary 10% error in the pressure Should the solution be here? 3 rd order fit O. Dominguez

2011 Scrubbing run – First night 6s6s 4s4s 2s2s 1s1s Injection interlock due to BIC sanity checks not performed in the last 25 hours Pressure close to the thresholds We wanted: O. Dominguez

6s6s 4s4s 2s2s 2s2s P1P1 P2P Scrubbing run – First night O. Dominguez

2011 P vs. batch spacing experiment O. Dominguez

2011 P vs. batch spacing experiment [1.86, 0.12] [1.70, 0.11] [1.86, 0.12] 3 rd order fit to simulated fluxes in order to reduce local effect of statistical fluctuations O. Dominguez

2011 P vs. batch spacing experiment experiment could not be carried out as planned due to several reasons: ns batch spacing not available - satellite bunches in SPS (delay RF buckets shift) - P close to thresholds for Beam 2 - injection interlock (BIC sanity check) only three points (2 relative measurements) and solely for beam 1 pressure did not stabilize in the time used for the first batch spacings simulations do not give clear agreement (a 3 rd point would be needed for verification) Nevertheless possible solution in the same region as for 2010 experiment 3 rd and 5 th order fits have been done, showing both similar solutions unfortunately, experiment not repeated at the end of the scrubbing run O. Dominguez

2 nd “experiment”: 2  s batch spacing – P linearity Exponential growth Linear behavior Saturation One could get contour plots from this points… O. Dominguez

2011 scrubbing - first night experiments together Considering  P O. Dominguez

 2b /  1b  3b /  1b  5b /  1b  4b /  1b  4us /  2us  6us /  2us 2011 scrubbing - first night experiments together 3 rd order fit O. Dominguez

best estimate for LSS surface : 2 Nov. 2010:  max =1.85±0.05, R=0.15±0.1 6 April 2011:  max =1.89±0.05, R=0.15±0.1 at same ionization gauge, b=40 mm, single beam no evidence for  max reduction due to surface conditioning at this location

multipacting threshold in the LHC arcs H. Maury December 2010 H. Maury

arc heat load – some 2010 data Heat load measured in the beam screen of the cells 21L3, 33L6, 13R7 during injection and ramp of 108 bunches before (left) ~30 mW/m/beam ) and after (right) the 2010 scrubbing run. G. Arduini

arc heat load – some 2011 data Injection #Ring RF bucket # Bunch spacing [ns]Bunches/inj Spacing between PS trains # PS trains/injection 1ring_110101pilot 1ring_210101pilot 2ring_ nominal 2ring_ nominal 3ring_ nominal 3ring_ nominal 4ring_ nominal 4ring_ nominal 5ring_ nominal 5ring_ nominal Fill 1704 (13/4/2011 – 12:16 to 16:47 Filling scheme (for both beams): 228 bunches/beam - Average intensity 1.22 e 11 p/bunch (first ramp after scrubbing): 50ns_1164b_36x2bi_18inj_scrub (cut at 228 bunches) Emittances at injection mW/m/beam trains of 72 bunches spaced alternatingly by 225 ns and by 1.1  s G. Arduini

H. Maury simulated 2011 heat load versus  max 70 mW/m

H. Maury simulated heat load in  max-R plane measured heat load corresponds to blue region

H. Maury multipacting threshold versus chamber radius, 50 ns bunch spacing

H. Maury heat load versus chamber radius, 50 ns spacing

e-cloud heat load for LHC upgrades 25-ns bunch spacing50-ns bunch spacing H. Maury electron cloud contribution acceptable if  max ≤1.2 H. Maury

e-cloud heat load also OK for 50 ns spacing plus “LHCb satellites” H. Maury

K. Li

instabilities threshold e- density : 3-6x10 11 m -3 at 450 GeV 6-10x10 11 m -3 at 4 TeV tune shift: ~0.01 at injection for 2x10 11 e - /m -3 (no field) ~0.002 at 4 TeV for 2x10 11 e - /m -3 (no field) K. Li

LHC arc chamber sawtooth I. Collins, V. Baglin, et al.

beam-screen orientation in S3-4

V. Baglin I. Collins, O. Grobner, EPAC’98 effect of the sawtooth assumptions agreed with Humberto Maury to model chamber w/o sawtooth: change distribution of reflected photons from cos 2  to uniform increase reflectivity from 20% to 80% increase photoelectron yield by factor 2

e- build up with & w/o sawtooth  max =1.4  max =1.5 H. Maury

heat load with & w/o sawtooth H. Maury

PS e-cloud:  ion =2.9 Mbarn, SEY=1.5, R=0.6, B=0 G, sz=60-85cm, Gaussian bunch(2000 macro particles) PS e-cloud simulations for different  z C. Bhat

next steps if/once method is established map surface parameters around the machine (>100 gauges); and track their changes draw conclusions for inverted sawtooth chambers make updated predictions for LHC at 25 ns spacing, e.g. optimize filling patterns for 25-ns scrubbing; scrubbing/commissioning scenarios update predictions for LHC upgrade scenarios higher-order coupled-bunch head-tail instability driven by e- cloud: “wake field” & growth rates

other ongoing or planned activities e-cloud pinch in quadrupoles, & new approach to resonance crossing (G. Franchetti) code development with EPFL (M. Mattes & E. Sorolla) modeling  waves & electron cloud e-cloud simulations for flat intense bunches in PS/SPS & corresponding MDs (Chandra Bhat) planned studies of SPS feedback with LARP & ICE (W. Höfle, E. Metral, G. Rumolo) longitudinal wake field & energy loss in SPS and LHC (collaboration with GSI (F.Yaman, O. Boine- Frankenheim, G. Rumolo, E. Shaposhnikova, F. Z.) e-cloud at collimators, field emission, heating