Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Fall 2015 Room 150 Harvill Building 10: :50 Mondays, Wednesdays & Fridays.
Please re-register your clicker
By the end of lecture today 10/12/15 Law of Large Numbers Central Limit Theorem
Before next exam (October 16th) Please read chapters in OpenStax textbook Please read Chapters 10, 11, 12 and 14 in Plous Chapter 10: The Representativeness Heuristic Chapter 11: The Availability Heuristic Chapter 12: Probability and Risk Chapter 14: The Perception of Randomness Schedule of readings Study Guide is online
On class website: Please complete Homework Assignment #12 Due Monday October 12 th Letter to a friend Homework
Everyone will want to be enrolled in one of the lab sessions Labs continue this week
Raw Scores Area & Probability Z Scores Formula z table Have raw score Find z Have z Find raw score Have area Find z Have z Find area Normal distribution Raw scores z-scores probabilities
Always draw a picture! Remember homework worksheet
. Try this one: Please find the (2) raw scores that border exactly the middle 95% of the curve Mean of 100 and standard deviation of 5 Go to table.4750 nearest z = 1.96 mean + z σ = (1.96)(5) = Go to table.4750 nearest z = mean + z σ = (-1.96)(5) = 90.20
. Try this one: Please find the (2) raw scores that border exactly the middle 95% of the curve Mean of 30 and standard deviation of 2 Go to table.4750 nearest z = 1.96 mean + z σ = 30 + (1.96)(2) = Go to table.4750 nearest z = mean + z σ = 30 + (-1.96)(2) = 26.08
. Try this one: Please find the (2) raw scores that border exactly the middle 99% of the curve Mean of 30 and standard deviation of 2 Go to table.4950 nearest z = 2.58 mean + z σ = 30 + (2.58)(2) = Go to table.4950 nearest z = mean + z σ = 30 + (-2.58)(2) = 24.84
. Please find the raw scores that border the middle 99% of the curve Please find the raw scores that border the middle 95% of the curve Which is wider?
Central Limit Theorem: If random samples of a fixed N are drawn from any population (regardless of the shape of the population distribution), as N becomes larger, the distribution of sample means approaches normality, with the overall mean approaching the theoretical population mean. Sampling distribution for continuous distributions XXXXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXX XXXXXX XXXX XXXX X X XXXXXXXXXX XXXXXXXXXX X XXXXXXXXXX Melvin Eugene Sampling Distribution of Sample means Distribution of Raw Scores 2 nd sample 23 rd sample
Proposition 1: If sample size ( n ) is large enough (e.g. 100) The mean of the sampling distribution will approach the mean of the population Central Limit Theorem Proposition 2: If sample size ( n ) is large enough (e.g. 100) The sampling distribution of means will be approximately normal, regardless of the shape of the population XXXXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXX XXXXXX XXXX XXXX X X XXXXXXXXXX XXXXXXXXXX X XXXXXXXXXX Proposition 3: The standard deviation of the sampling distribution equals the standard deviation of the population divided by the square root of the sample size. As n increases SEM decreases. As n ↑ x will approach µ As n ↑ curve will approach normal shape As n ↑ curve variability gets smaller
Proposition 1: If sample size ( n ) is large enough (e.g. ~30) the mean of the sampling distribution will approach the mean of the population Law of large numbers: As the number of measurements increases the data becomes more stable and a better approximation of the true (theoretical) probability. Larger sample sizes tend to be associated with stability. As the number of observations ( n ) increases or the number of times the experiment is performed, the estimate will become more accurate. Central Limit Theorem: If random samples of a fixed N are drawn from any population (regardless of the shape of the population distribution), as N becomes larger, the distribution of sample means approaches normality, with the overall mean approaching the theoretical population mean. Related but not identical
Proposition 2: If sample size (n) is large enough (e.g. 100), the sampling distribution of means will be approximately normal, regardless of the shape of the population population sampling distribution n = 5 sampling distribution n = 30 sampling distribution n = 2 sampling distribution n = 5 sampling distribution n = 4 sampling distribution n = 25 Population Take sample (n = 5) – get mean Repeat over and over
Central Limit Theorem Proposition 2: If sample size (n) is large enough (e.g. 100) The sampling distribution of means will be approximately normal, regardless of the shape of the population
Central Limit Theorem Proposition 2: If sample size (n) is large enough (e.g. 100) The sampling distribution of means will be approximately normal, regardless of the shape of the population
Central Limit Theorem Proposition 2: If sample size (n) is large enough (e.g. 100) The sampling distribution of means will be approximately normal, regardless of the shape of the population
Central Limit Theorem XXXXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXX XXXXXX XXXX XXXX X X XXXXXXXXXX XXXXXXXXXX X XXXXXXXXXX Proposition 3: The standard deviation of the sampling distribution equals the standard deviation of the population divided by the square root of the sample size. As n increases SEM decreases.
Proposition 1: If sample size ( n ) is large enough (e.g. 100) The mean of the sampling distribution will approach the mean of the population Central Limit Theorem Proposition 2: If sample size ( n ) is large enough (e.g. 100) The sampling distribution of means will be approximately normal, regardless of the shape of the population XXXXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXX XXXXXX XXXX XXXX X X XXXXXXXXXX XXXXXXXXXX X XXXXXXXXXX Proposition 3: The standard deviation of the sampling distribution equals the standard deviation of the population divided by the square root of the sample size. As n increases SEM decreases. As n ↑ x will approach µ As n ↑ curve will approach normal shape As n ↑ curve variability gets smaller
Central Limit Theorem XXXXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXX XXXXXX XXXX XXXX X X XXXXXXXXXX XXXXXXXXXX X XXXXXXXXXX Proposition 3: The standard deviation of the sampling distribution equals the standard deviation of the population divided by the square root of the sample size. As n increases SEM decreases.
Proposition 1: If sample size ( n ) is large enough (e.g. 100) The mean of the sampling distribution will approach the mean of the population Central Limit Theorem Proposition 2: If sample size ( n ) is large enough (e.g. 100) The sampling distribution of means will be approximately normal, regardless of the shape of the population XXXXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXX XXXXXX XXXX XXXX X X XXXXXXXXXX XXXXXXXXXX X XXXXXXXXXX Proposition 3: The standard deviation of the sampling distribution equals the standard deviation of the population divided by the square root of the sample size. As n increases SEM decreases. As n ↑ x will approach µ As n ↑ curve will approach normal shape As n ↑ curve variability gets smaller
Central Limit Theorem: If random samples of a fixed N are drawn from any population (regardless of the shape of the population distribution), as N becomes larger, the distribution of sample means approaches normality, with the overall mean approaching the theoretical population mean. Animation for creating sampling distribution of sample means Eugene Melvin Mean for sample 12 Mean for sample 7 Distribution of Raw Scores Sampling Distribution of Sample means Distribution of single sample Sampling Distribution of Sample means
Central Limit Theorem: If random samples of a fixed N are drawn from any population (regardless of the shape of the population distribution), as N becomes larger, the distribution of sample means approaches normality, with the overall mean approaching the theoretical population mean. Sampling distribution for continuous distributions XXXXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXX XXXXXX XXXX XXXX X X XXXXXXXXXX XXXXXXXXXX X XXXXXXXXXX Melvin Eugene Sampling Distribution of Sample means Distribution of Raw Scores 2 nd sample 23 rd sample
Proposition 1: If sample size ( n ) is large enough (e.g. 100) The mean of the sampling distribution will approach the mean of the population Central Limit Theorem Proposition 2: If sample size ( n ) is large enough (e.g. 100) The sampling distribution of means will be approximately normal, regardless of the shape of the population XXXXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXX XXXXXX XXXX XXXX X X XXXXXXXXXX XXXXXXXXXX X XXXXXXXXXX Proposition 3: The standard deviation of the sampling distribution equals the standard deviation of the population divided by the square root of the sample size. As n increases SEM decreases. As n ↑ x will approach µ As n ↑ curve will approach normal shape As n ↑ curve variability gets smaller
. Writing Assignment: Writing a letter to a friend Imagine you have a good friend (pick one). This is a good friend whom you consider to be smart and interested in stuff generally. They are teaching themselves stats (hoping to test out of the class) but need your help on a couple ideas. For this assignment please write your friend/mom/dad/ favorite cousin a letter answering these two questions: (Feel free to use diagrams and drawings if you think that can help) Dear Friend, 1. I’m struggling with this whole Central Limit Theorem idea. Could you describe for me the difference between a distribution of raw scores, and a distribution of sample means? 2. I also don’t get the “three propositions of the Central Limit Theorem”. They all seem to address sample size, but I don’t get how sample size could affect these three things. If you could help explain it, that would be really helpful.
. Imagine you have a good friend (pick one). This is a good friend whom you consider to be smart and interested in stuff generally. They are teaching themselves stats (hoping to test out of the class) but need your help on a couple ideas. For this assignment please write your friend/mom/dad/ favorite cousin a letter answering these two questions: (Feel free to use diagrams and drawings if you think that can help) Dear Friend, 1. I’m struggling with this whole Central Limit Theorem idea. Could you describe for me the difference between a distribution of raw scores, and a distribution of sample means? 2. I also don’t get the “three propositions of the Central Limit Theorem”. They all seem to address sample size, but I don’t get how sample size could affect these three things. If you could help explain it, that would be really helpful.
.
Comments on Dan Gilbert Reading