Semantic Evaluation of Machine Translation Billy Wong, City University of Hong Kong 21 st May 2010
Introduction Surface text similarity is not a reliable indicator in automatic MT evaluation Insensitive to variation of translation Deeper linguistic analysis is preferred WordNet is widely used for matching synonyms E.g. METEOR (Banerjee & Lavie 2005), TERp (Snover et al. 2009), ATEC (Wong & Kit 2010)… Is the similarity of words between MT outputs and references fully described?
Motivation WordNet Granularity of sense distinctions is highly fine-grained Word pairs not in the same sense: [mom vs mother], [safeguard vs security], [expansion vs extension], [journey vs tour], [impact vs influence]…etc. Word pairs in similar meaning Problematic if ignore them in evaluation What is needed is a word similarity measure Proposal: Utilization of word similarity measures in automatic MT evaluation
Word Similarity Measures Knowledge-based (WordNet) Wup (Wu & Palmer 1994) Res (Resnik 1995) Jcn (Jiang & Conrath 1997) Hso (Hirst & St-Onge 1998) Lch (Leacock & Chodorow 1998) Lin (Lin 1998) Lesk (Banerjee & Pedersen 2002) Corpus-based LSA (Landauer et al. 1998)
Experiment Three questions: To what extent two words are considered similar? Which word similarity measure(s) is/are more appropriate to use? How much performance gain an MT evaluation metric can obtain by incorporating word similarity measures?
Setting Data MetricsMATR08 development data 1992 MT outputs 8 MT systems 4 references Evaluation metric Unigram matching Exact match / synonym / semantically similar Same weight Three variants Precision (p), recall (r) and F-measure (f) where c: MT output t: reference translation
Result (1) Correlation thresholds of each measure
Result (2) Correlation of the metric
Conclusion The importance of semantically similar words in automatic MT evaluation Two word similarity measures, wup and LSA, perform relatively better Remaining problems Semantic similarity vs. Semantic relatedness E.g. [committee vs chairman] (LSA) Most WordNet similarity measures run on verbs and nouns only
Thank you