Search for the Diffuse Supernova Neutrino Background in LENA DPG-Tagung in Heidelberg 9.3.2007 M. Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Marrodán Undagoitia,

Slides:



Advertisements
Similar presentations
Nucleon Decay Search with LENA DOANOW 07 Honolulu, Hawaii M. Wurm Technische Universität München, Germany
Advertisements

Analysis of the Optical Properties of Organic Liquid Scintillator in LENA DPG-Tagung in Heidelberg M. Wurm, T. Marrodán Undagoitia, F. v. Feilitzsch,
New Large* Neutrino Detectors
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
Low Energy Neutrino Astrophysics
LAGUNA and Neutrino Physics NOW 2008 Lothar Oberauer TU München, Germany.
Search for spontaneous muon emission from lead nuclei with OPERA bricks M. Giorgini, V. Popa Bologna Group OPERA Collaboration Meeting, LNGS, 19-22/05/2003.
IceCube IceCube Neutrino-Trigger network of optical telescopes Anna Franckowiak 1, Timo Griesel 2, Lutz Koepke 2, Marek Kowalski 1, Thomas Kowarik 2, Anna.
Sergio Palomares-Ruiz November 17, 2008 Dark Matter Annihilation/Decay Scenarios Novel Searches for Dark Matter with Neutrino Telescopes Columbus, OH (USA)
LENA Low Energy Neutrino Astrophysics F von Feilitzsch, L. Oberauer, W. Potzel Technische Universität München LENA Delta.
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
Experimental Status of Geo-reactor Search with KamLAND Detector
Results and Future of the KamLAND Experiment
SN 1987A – HISTORICAL VIEW HISTORICAL VIEW ABOUT REGISTRATION OF THE NEUTRINO SIGNAL WITH BAKSAN, KAMIOKANDE-II, IMB DETECTORS I.V. Krivosheina, NIRFI,
Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Gary C. Hill, CCAPP Symposium 2009, Ohio State University, October 12th, 2009 Photograph: Forest Banks Gary C. Hill University of Wisconsin, Madison for.
HSD Hyper Scintillation Detector R.S.RAGHAVAN VIRGINIA TECH Neutrino Geophysics Workshop Honolulu HI--Dec 15, 2005.
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
Neutrinos as Probes: Solar-, Geo-, Supernova neutrinos; Laguna
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
Atmospheric Neutrino Oscillations in Soudan 2
Physics Potential of the LENA Detector Epiphany Conference Cracow January 8, 2010 Michael Wurm Technische Universität München.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
LENA – a liquid scintillator detector for Low Energy Neutrino Astronomy and proton decay Marianne Göger-Neff NNN07 TU MünchenHamamatsu Detector outline.
Astrophysics working group - CERN March, 2004 Point source searches, Aart Heijboer 1 Point Source Searches with ANTARES Outline: reconstruction news event.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
Using Reactor Anti-Neutrinos to Measure sin 2 2θ 13 Jonathan Link Columbia University Fermilab Long Range Planning Committee, Neutrino Session November.
Karsten M. Heeger US Reactor  13 Meeting, March 15, 2004 Comparison of Reactor Sites and  13 Experiments Karsten Heeger LBNL.
SNS2 Workshop August 28-29, 2003 Richard Talaga, Argonne1 Calibration of the OMNIS-LPC Supernova Neutrino Detector Outline –OMNIS Experiment and Detectors.
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
TAUP Searches for nucleon decay and n-n oscillation in Super-Kamiokande Jun Kameda (ICRR, Univ. of Tokyo) for Super-Kamiokande collaboration Sep.
GADZOOKS! project at Super-Kamiokande M.Ikeda (Kamioka ICRR, U.of Tokyo) for Super-K collaboration 1 Contents GADZOOKS! project Supernova.
L. Oberauer, Paris, June 2004   Measurements at Reactors Neutrino 2004 CdF, Paris, June chasing the missing mixing angle.
MC SIMULATIONS TERRESTRIAL NEUTRINOS SOLAR NEUTRINOS Detection Channels - neutrino-electron scattering → Compton-like shoulder - CC reaction on 13 C (1%
C.Vigorito, University & INFN Torino, Italy 30 th International Cosmic Ray Conference Merida, Mexico Search for neutrino bursts from Gravitational stellar.
1 水质契仑科夫探测器中的中子识别 张海兵 清华大学 , 南京 First Study of Neutron Tagging with a Water Cherenkov Detector.
Determining the Neutrino Hierarchy From a Galactic Supernova David Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s Nova” 7,500 light years (2.3 kPc)
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
Determining the neutrino hierarchy from a galactic supernova using a next-generation detector David M. Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s.
Study of pair-produced doubly charged Higgs bosons with a four muon final state at the CMS detector (CMS NOTE 2006/081, Authors : T.Rommerskirchen and.
Alexander Kappes Extra-Galactic sources workshop Jan. 2009, Heidelberg Gamma ray burst detection with IceCube.
Sebastian Kuch, Rezo Shanidze Preliminary Studies of the KM3NeT Physics Sensitivity KM3NeT Collaboration Meeting Pylos, Greece, April 2007.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
  Measurement with Double Chooz IDM chasing the missing mixing angle e  x.
CP phase and mass hierarchy Ken-ichi Senda Graduate University for Advanced Studies (SOKENDAI) &KEK This talk is based on K. Hagiwara, N. Okamura, KS PLB.
Solar Neutrino Results from SNO
Supernova Relic Neutrinos (SRN) are a diffuse neutrino signal from all past supernovae that has never been detected. Motivation SRN measurement enables.
September 10, 2002M. Fechner1 Energy reconstruction in quasi elastic events unfolding physics and detector effects M. Fechner, Ecole Normale Supérieure.
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
Diffuse supernova neutrinos Cecilia Lunardini Arizona State University And RIKEN BNL Research Center.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara Chiba University.
A Measurement of the Ultra-High Energy Cosmic Ray Spectrum with the HiRes FADC Detector (HiRes-2) Andreas Zech (for the HiRes Collaboration) Rutgers University.
Review of Neutrino Coherent Scattering
Jonathan Davis King’s College London
completed in austral season South Pole completed in austral season.
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
The Diffuse Flux of Supernova Neutrinos
Neutrino astronomy Measuring the Sun’s Core
Physics with the ICARUS T1800 detector
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
Erik Strahler UW-Madison 28/4/2009
Search for point-like source in ANTARES
MC studies of the KM3NeT physics performance Rezo Shanidze
Status of Neutron flux Analysis in KIMS experiment
Low Energy Neutrino Astrophysics
Presentation transcript:

Search for the Diffuse Supernova Neutrino Background in LENA DPG-Tagung in Heidelberg M. Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Marrodán Undagoitia, L. Oberauer, W. Potzel, J. Winter Technische Universität München Phys.Rev.D 75 (2007)

Diffuse Supernova Neutrino Background (DSNB): contribute to an isotropic background of v v e could be detected in LENA via v e + p → n + e + clear (delayed) coincidence signal due to e + -annihilation & n-capture current best limit on the DSN flux is given by Super-Kamiokande:  (E>19MeV) ≤ 1.2 v/cm²s solid: v e dashed: v e S. Ando, astro-ph/ __ Outline DSNB Background Event Rates Spectroscopy 1/8 TU MünchenMichael Wurm LENA will improve this limit by a factor of 9:  high discovery potential

LL – Lawrence Livermore TBP – Thompson, Burrows, Pinto KRJ – Keil, Raffelt, Janka DSN model calculations use … SN neutrino spectra: little experimental data  spectral shape is model-dependent Supernova Rate SNR(z) contributions from high z regions are red-shifted, large uncertainties of conventional observations z=0: f SN = , likely 2.5 z>0: even larger E>10MeV: SNR(z=0) SN v spectrum E<10MeV: SNR(z>1) f SN Outline DSNB Background Event Rates Spectroscopy 2/8 TU MünchenMichael Wurm

in a pure water Čerenkov detector the n-capture is not detected. background sources reactor v e :~ 10 MeV atmospheric v e :~ 30 MeV spallation products:< 19 MeV invisible muons:> 19 MeV  no observational window  background subtracted statistically observational window S. Ando, astro-ph/ Outline DSNB Background Event Rates Spectroscopy 3/8 TU MünchenMichael Wurm

in a liquid-scintillator detector the n-capture can be tagged. background sources reactor v e :~ 10 MeV atmospheric v e :~ 30 MeV spallation products:< 19 MeV invisible muons:> 19 MeV  observational window: 10 MeV < E < 30 MeV observational window S. Ando, astro-ph/ Outline DSNB Background Event Rates Spectroscopy 3/8 TU MünchenMichael Wurm

reactor v e flux depends on location reactor v’s atmospheric v’s Outline DSNB Background Event Rates Spectroscopy 4/8 TU MünchenMichael Wurm nuclear power plants possible detector sites _ atmospheric v e flux depends on magnetic latitude up to a factor 2 difference in flux _ DSN Pyhäsalmi Hawaii

detector siteenergy window (MeV) signal/background (10 yrs exposure, f SN = 2.5) Kamioka11.1 – /11 Frejus10.8 – /12 Kimballton10.6 – /11 Pyhäsalmi9.7 – /13 Pylos9.4 – /12 Homestake9.0 – /13 Henderson8.9 – /13 Hawaii8.4 – /12 New Zealand8.2 – /12 Outline DSNB Background Event Rates Spectroscopy 5/8 TU MünchenMichael Wurm

LENA at Pyhäsalmi (Finland) dependent on SN model (assumed f SN =2.5) LL:113 KRJ:100 TBP:60 dependent on SNR f SN = f SN = f SN = DSN event rate in 10yrs inside the energy window from 9.7 to 25 MeV background events: 13 ~25% of events are due to v’s originating from z>1! 6/8 TU MünchenMichael Wurm Outline DSNB Background Event Rates Spectroscopy

Limits on the SN Rate (z=0) by counting event numbers in the energy bin 10MeV < E v < 14MeV, one can derive a limit on f SN without using a SN v model in case of f SN =2.5: f SN ≤1.3 could be excluded at 2  after 10 years Pyhäsalmi (FIN) event rates (10-14MeV): LL2.0 f SN /yr KRJ1.5 f SN /yr TBP2.0 f SN /yr BG0.6 f SN /yr cross-check of ‘optical’ SNR measurements Outline DSNB Background Event Rates Spectroscopy 7/8 TU MünchenMichael Wurm

Constraints on SN model using MC simulations  optical measurements will determine the SNR with high accuracy  with this input, the spectral slope of the DSN can be used to distinguish between different SN explosion scenarios comparison of count rates in the energy bins 10MeV < E B1 < 14MeV 15MeV < E B2 < 25MeV significance levels of SN model exclusion 8/8 TU MünchenMichael Wurm Outline DSNB Background Event Rates Spectroscopy

 Due to the excellent background discrimination, a liquid-scintillator detector enables a detection of the Diffuse Supernova Neutrinos in an almost background-free energy window form ~10 to 30 MeV.  The discovery potential for the DSN in LENA is very high. According to current models, ~2 to 20 events per year are expected.  After 10 years, statistics will be large enough to give significant constraints on both Supernova Rate and SN explosion models.