Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation
2.59 (1) Å (6) Å 19.8 (3)° 2.02 (4) Å (4) Å 41.6 (51)° Leung, H. O.; Marshall, M. D., J. Chem. Phys. 126, (2007). Leung, H. O.; Marshall, M. D., J. Phys. Chem. A, 118, 9783 (2014). “Top” “Side”
1.892 (14) Å (1) Å (4) Å 18.7 (15)° 18.3 (1)° 36.5 (2)° Cole, G. C.; Legon, A. C. Chem. Phys. Lett. 400, Kisiel, Z.; Fowler, P. W.; Legon, A. C. J. Chem. Phys. 93, Cole, G. C.; Legon, A. C. Chem. Phys. Lett. 369, 2003.
2.59 (1) Å (6) Å 19.8 (3)° Leung, H. O.; Marshall, M. D., J. Phys. Chem. A, 118, 9783 (2014). Leung, H.O.; Marshall, M. D.; Feng, F., J. Phys. Chem. A 117, (2013) (4) Å 3.01 (1) Å 58.5 (5)°
Energy (cm -1 ) Gaussian 09 MP2/ G(2d,2p)
Chirped pulse Fourier transform microwave spectrometer: GHz Balle-Flygare Fourier transform microwave spectrometer: GHz Mixture was 1% vinyl chloride and 1% HCl in argon Photo courtesy of Aaron Bozzi, Amherst College Photo courtesy of Jessica Mueller, Amherst College
C 2 H 3 35 Cl-H 35 ClC 2 H 3 37 Cl-H 35 ClC 2 H 3 35 Cl-H 37 ClC 2 H 3 37 Cl-H 37 Cl A / MHz (24) (70) (74) (14) B / MHz (12) (15) (13) (17) C / MHz (11) (98) (10) (13) Highest J6444 Highest K a 2111 Number of transitions Number of a- type transitions Number of b- type transitions 5332 RMS (MHz)
Most abundant CH 2 CH 37 Cl-H 35 ClCH 2 CH 35 Cl-H 37 Cl CH 2 CH 37 Cl-H 37 Cl
Most abundant CH 2 CH 37 Cl-H 35 Cl CH 2 CH 35 Cl-H 37 Cl CH 2 CH 37 Cl-H 37 Cl Hyperfine patterns match
CH 2 CH 35 Cl-H 37 Cl Observed Predicted
C 2 H 3 35 Cl-H 35 ClC 2 H 3 37 Cl-H 35 ClC 2 H 3 35 Cl-H 37 ClC 2 H 3 37 Cl-H 37 Cl A (43) (57) (25) (34) B (26) (30) (14) (26) C (21) (42) (15) (95) J /10 (96)7.137(43)6.92(20)1.86(10)** J K /10 (68) aa (HCl) –41.367(17)–41.953(27)– (72)– (97) bb (HCl) (14)14.966(18) (84) (93) cc (HCl) (14)26.987(20) (84) (91) | ab \ (HCl) 29.59(70)30.6(11)23.39(40)21.19(46) aa (v.c.) (55) (94) (34) (46) bb (v.c.) (14) –42.864(18)– (91)–43.186(11) cc (v.c.) (11)23.241(14) (75) (81) | ab \ (v.c.) 25.73(65)19.08(84)*27.05(37)18.40(39) rms / kHz * | bc \ = 36.0(25)** J /10 3 =0.395(76)
Assume no efg perturbation upon complexation, g = angle between HCl and the g inertial axis. aa o bb o cc o
Assume no efg perturbation upon complexation, and principal axis along C–Cl bond. g = angle between C–Cl bond and the g inertial axis. aa o bb o cc o
2.5989(39) Å (26) Å (15)° (69)° P cc is over 4 amu Å 2 – complex is not planar Use quadrupole coupling constants to determine angles Fit Cl–Cl separation to I a, I b and I c for three isotopologues RMS = 1.59 amu Å 2
Nuclear quadrupole coupling hyperfine splitting analyzed for several transitions in three isotopologues in ground tunneling state of vinyl chloride–HCl Deviations observed in some transitions Often one half of an asymmetry doublet appears “normal,” while the other can’t be fit Angular information from quadrupole coupling constants is helpful in structure determination
C 2 H 3 35 Cl-H 35 ClC 2 H 3 37 Cl-H 35 ClC 2 H 3 35 Cl-H 37 ClC 2 H 3 37 Cl-H 37 Cl 3 03 – – – – – – – – – 2 02