Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.

Slides:



Advertisements
Similar presentations
MICROWAVE SPECTRUM AND AB INITIO CALCULATIONS OF meta-CHLOROBENZALDEHYDE Sean Arnold, Jessica Garrett, & Dr. Gordon Brown Department of Science and Mathematics.
Advertisements

1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL ACETYLIDES P. M. SHERIDAN, M. K. L. BINNS Department of Chemistry and Biochemistry, Canisius College.
THE MICROWAVE SPECTRA OF THE LINEAR OC HCCCN, OC DCCCN, AND THE T-SHAPED HCCCN CO 2 COMPLEXES The 62 nd. International Symposium on Molecular Spectroscopy,
Infrared spectra of OCS-C 6 H 6, OCS-C 6 H 6 -He and OCS-C 6 H 6 -Ne van der Waals Complexes M. Dehghany, J. Norooz Oliaee, Mahin Afshari, N. Moazzen-Ahmadi.
Submillimeter-wave Spectroscopy of 13 C 1 -Methyl formate [H 13 COOCH 3 ] in the Ground State Atsuko Maeda, Ivan Medvedev, Eric Herbst, Frank C. De Lucia,
THE MICROWAVE SPECTRUM, STRUCTURE, AND DOUBLE PROTON EXCHANGE OF FORMIC ACID – NITRIC ACID Becca Mackenzie Chris Dewberry, Ken Leopold Department of Chemistry,
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Chirped-pulsed FTMW Spectrum of 4-Fluorobenzyl Alcohol
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
Susanna Stephens H 2 O  AgF characterised by Rotational Spectroscopy.
OSU – June – SGK1 STEVE KUKOLICH, ERIK MITCHELL ╬, SPENCER CAREY, MING SUN, AND BRYAN SARGUS, Dept. of Chemistry and Biochemistry, The University.
65th OSU International Symposium on Molecular Spectroscopy RH14.
Microwave Spectroscopy and Proton Transfer Dynamics in the Formic Acid-Acetic Acid Dimer Brian Howard, Edward Steer, Michael Tayler, Bin Ouyang (Oxford.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Zeinab. T. Dehghani, A. Mizoguchi, H. Kanamori Department of Physics, Tokyo Institute of Technology Millimeter-Wave Spectroscopy of S 2 Cl 2 : A Candidate.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
OSU – June STEPHEN KUKOLICH, Chemistry Dept., University of Arizona, MICHAEL PALMER School of Chemistry, University of Edinburgh, PETER GRONER,
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Lena F. Elmuti, Daniel A. Obenchain, Don L. Jurkowski, Cori L. Christenholz, Amelia J. Sanders, Rebecca A. Peebles, Sean A. Peebles Department of Chemistry,
The Rotational Spectra of Cyclohexene Oxide and Its Argon van der Waals Complex DANIEL J. FROHMAN, STEWART E. NOVICK AND WALLACE C. PRINGLE Wesleyan University.
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
RANIL M. GURUSINGHE, MICHAEL TUBERGEN Department of Chemistry and Biochemistry, Kent State University, Kent, OH. RANIL M. GURUSINGHE, MICHAEL TUBERGEN.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Bri Gordon Steven T. Shipman New College of Florida
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Structures and Internal Dynamics of H 2 S  ICF 3 and H 2 O  ICF 3 Nicholas R. Walker, Susanna L. Stephens, Anthony C. Legon 1 67 th International Symposium.
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
S TRUCTURE D ETERMINATION AND CH···F I NTERACTIONS IN H 2 C=CHF···H 2 C=CF 2 B Y F OURIER - T RANSFORM M ICROWAVE S PECTROSCOPY Rachel E. Dorris, Rebecca.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
Infrared--Microwave Double Resonance Spectroscopy of Ar-DF (v = 0,1,2) Justin L. Neill, Gordon G. Brown, and Brooks H. Pate University of Virginia Department.
Formic Sulfuric Anhydride: A new chemical species with possible implications for atmospheric aerosol 1 Rebecca B. Mackenzie, Christopher T. Dewberry, and.
Nicholas R. Walker, David Hird, Anthony C. Legon 1 68 th International Symposium on Molecular Spectroscopy, Ohio State University, Broadband Rotational.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
Rotational Spectra of N 2 O-H 2 Complexes University of Alberta Jen Nicole Landry and Wolfgang Jäger June 23, 2005.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Analysis of bands of the 405 nm electronic transition of C3Ar
Department of Chemistry
Structure and tunneling dynamics of gauche-1,3-butadiene
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
Carlos Cabezas and Yasuki Endo
Becca Mackenzie Chris Dewberry, Ken Leopold
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Department of Chemistry
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Michal M. Serafin, Sean A. Peebles
Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
and analysis of hyperfine structure from four quadrupolar nuclei
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
MICROWAVE SPECTRA, MOLECULAR STRUCTURE AND AROMATIC CHARACTER OF BN-NAPHTHALENE (4A,8A-AZABORANAPHTHALENE) AARON M. PEJLOVAS, STEPHEN G. KUKOLICH, University.
Presentation transcript:

Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation

2.59 (1) Å (6) Å 19.8 (3)° 2.02 (4) Å (4) Å 41.6 (51)° Leung, H. O.; Marshall, M. D., J. Chem. Phys. 126, (2007). Leung, H. O.; Marshall, M. D., J. Phys. Chem. A, 118, 9783 (2014). “Top” “Side”

1.892 (14) Å (1) Å (4) Å 18.7 (15)° 18.3 (1)° 36.5 (2)° Cole, G. C.; Legon, A. C. Chem. Phys. Lett. 400, Kisiel, Z.; Fowler, P. W.; Legon, A. C. J. Chem. Phys. 93, Cole, G. C.; Legon, A. C. Chem. Phys. Lett. 369, 2003.

2.59 (1) Å (6) Å 19.8 (3)° Leung, H. O.; Marshall, M. D., J. Phys. Chem. A, 118, 9783 (2014). Leung, H.O.; Marshall, M. D.; Feng, F., J. Phys. Chem. A 117, (2013) (4) Å 3.01 (1) Å 58.5 (5)°

Energy (cm -1 ) Gaussian 09 MP2/ G(2d,2p)

 Chirped pulse Fourier transform microwave spectrometer: GHz  Balle-Flygare Fourier transform microwave spectrometer: GHz  Mixture was 1% vinyl chloride and 1% HCl in argon Photo courtesy of Aaron Bozzi, Amherst College Photo courtesy of Jessica Mueller, Amherst College

C 2 H 3 35 Cl-H 35 ClC 2 H 3 37 Cl-H 35 ClC 2 H 3 35 Cl-H 37 ClC 2 H 3 37 Cl-H 37 Cl A / MHz (24) (70) (74) (14) B / MHz (12) (15) (13) (17) C / MHz (11) (98) (10) (13) Highest J6444 Highest K a 2111 Number of transitions Number of a- type transitions Number of b- type transitions 5332 RMS (MHz)

Most abundant CH 2 CH 37 Cl-H 35 ClCH 2 CH 35 Cl-H 37 Cl CH 2 CH 37 Cl-H 37 Cl

Most abundant CH 2 CH 37 Cl-H 35 Cl CH 2 CH 35 Cl-H 37 Cl CH 2 CH 37 Cl-H 37 Cl Hyperfine patterns match

CH 2 CH 35 Cl-H 37 Cl Observed Predicted

C 2 H 3 35 Cl-H 35 ClC 2 H 3 37 Cl-H 35 ClC 2 H 3 35 Cl-H 37 ClC 2 H 3 37 Cl-H 37 Cl A (43) (57) (25) (34) B (26) (30) (14) (26) C (21) (42) (15) (95)  J /10  (96)7.137(43)6.92(20)1.86(10)**  J K /10  (68)  aa (HCl) –41.367(17)–41.953(27)– (72)– (97)  bb (HCl) (14)14.966(18) (84) (93)  cc (HCl) (14)26.987(20) (84) (91) |  ab \ (HCl) 29.59(70)30.6(11)23.39(40)21.19(46)  aa (v.c.) (55) (94) (34) (46)  bb (v.c.)  (14) –42.864(18)– (91)–43.186(11)  cc (v.c.) (11)23.241(14) (75) (81) |  ab \ (v.c.) 25.73(65)19.08(84)*27.05(37)18.40(39) rms / kHz * |  bc \ = 36.0(25)**  J /10  3 =0.395(76)

Assume no efg perturbation upon complexation,  g = angle between HCl and the g inertial axis. aa o bb o cc o

Assume no efg perturbation upon complexation, and principal axis along C–Cl bond.  g = angle between C–Cl bond and the g inertial axis. aa o bb o cc o

2.5989(39) Å (26) Å (15)° (69)°  P cc is over 4 amu Å 2 – complex is not planar  Use quadrupole coupling constants to determine angles  Fit Cl–Cl separation to I a, I b and I c for three isotopologues  RMS = 1.59 amu Å 2

 Nuclear quadrupole coupling hyperfine splitting analyzed for several transitions in three isotopologues in ground tunneling state of vinyl chloride–HCl  Deviations observed in some transitions  Often one half of an asymmetry doublet appears “normal,” while the other can’t be fit  Angular information from quadrupole coupling constants is helpful in structure determination

C 2 H 3 35 Cl-H 35 ClC 2 H 3 37 Cl-H 35 ClC 2 H 3 35 Cl-H 37 ClC 2 H 3 37 Cl-H 37 Cl 3 03 – – – – – – – – – 2 02