IDS120i GEOMETRY. SIMULATIONS FOR 60%W+40%He SHIELDING WITH STST SHIELDING VESSELS. Hg vs. Ga DEPOSITED POWER DISTRIBUTION. (using Ding's optimized parameters)

Slides:



Advertisements
Similar presentations
SUPERCONDUCTING SOLENOIDS - SHIELDING STUDIES 1. N. Souchlas BNL (Oct. 5, 2010)
Advertisements

Mercury Chamber Update V. Graves NF-IDS Meeting October 4, 2011.
IDS120j WITH/WITHOUT GAPS SH#4 AZIMUTHAL DPD DISTRIBUTION ANALYSIS Nicholas Souchlas, PBL (3/14/2012) 1.
KT McDonald Target Studies Weekly Meeting July 10, Power Deposition in Graphite Targets of Various Radii K.T. McDonald, J. Back, N. Souchlas July.
Magnetic Configuration of the Muon Collider/ Neutrino Factory Target System Hisham Kamal Sayed, *1 H.G Kirk, 1 K.T. McDonald 2 1 Brookhaven National Laboratory,
Meson Production at 8 GeV for IDS120h X. Ding, UCLA Target Studies, Dec. 27, 2011.
Meson Production Comparison between Hg and Ga at 8 GeV X. Ding, UCLA Target Studies, Oct. 04, 2011.
Meson Production Comparison between HG and GA at 8 GeV (Update) X. Ding, UCLA Target Studies, Oct. 18, 2011.
Particle Production of a Carbon/Mercury Target System for the Intensity Frontier X. Ding, UCLA H.G. Kirk, BNL K.T. McDonald, Princeton Univ MAP Spring.
Comparison of Power Depositions Xiaoping Ding UCLA Target Studies Jul. 13, 2010.
Operated by Brookhaven Science Associates for the U.S. Department of Energy A Pion Production and Capture System for a 4 MW Target Station X. Ding, D.
Pion capture and transport system for PRISM M. Yoshida Osaka Univ. 2005/8/28 NuFACT06 at UCI.
IDS120h: Be WINDOW DETAILED CALCULATION, SHIELDING VESSELS, RESULTS FOR DIFFERENT GLOBAL STEPS Nicholas Souchlas (9/20/2011) 1.
MC/NF TARGET SHIELDING STUDIES. NICHOLAS SOUCHLAS (10/29/2010)‏ 1.
1 Meson Production Simulations X. Ding, D. B. Cline UCLA H. Kirk, J. S. Berg BNL N u F a c t th International Workshop on Neutrino Factories, Superbeams.
SHIELDING STUDIES FOR THE MUON COLLIDER TARGET NICHOLAS SOUCHLAS BNL Nov 30, 2010 ‏ 1.
Energy Deposition of 4MW Beam Power in a Mercury Jet Target Xiaoping Ding UCLA Target Studies Mar. 9, 2010 (Update of talk on Feb. 9, 2010)
Harold G. Kirk Brookhaven National Laboratory Target System Update IDS-NF Plenary Meeting Arlington, VA October 18, 2011.
Harold G. Kirk Brookhaven National Laboratory Target Baseline IDS-NF Plenary CERN March 23-24, 2009.
IDS-NF Target Studies H. Kirk (BNL) July 8, 2009.
1 Comparison of Power Depositions X. Ding, D. B. Cline, UCLA H. Kirk, J. S. Berg, BNL Collaboration Meeting July 2, 2010.
Comparison of Power Deposition in SC1 Coil Xiaoping Ding UCLA Target Studies Jun. 29, 2010.
1 3D Simulations for the Elliptic Jet W. Bo (Aug 12, 2009) Parameters: Length = 8cm Elliptic jet: Major radius = 0.8cm, Minor radius = 0.3cm Striganov’s.
Power Deposition in SC1 Coil Xiaoping Ding UCLA Target Studies Apr. 20, 2010.
SUPERCONDUCTING SOLENOIDS - SHIELDING STUDIES 3. NICHOLAS SOUCHLAS (10/28/2010)‏
IDS120h POWER DEPOSITION AND Hg POOL STUDIES Nicholas Souchlas (7/26/2011) 1.
STUDY II: m1507 vs. m1510 IDS120f: m1507/MCNP vs. M1510/MCNP vs. FLUKA IDS120f vs. IDS20g GEOMETRY IDS90f: B10/B11 SHIELDING RING(S) STUDIES Nicholas Souchlas.
Reconstruction of neutrino interactions in PEANUT G.D.L., Andrea Russo, Luca Scotto Lavina Naples University.
SUPERCONDUCTING SOLENOIDS - SHIELDING STUDIES 1..
Meson Productions for Target System with GA/HG Jet and IDS120h Configuration X. Ding (Presenter), D. Cline, UCLA H. Kirk, J.S. Berg, BNL Muon Accelerator.
Energy deposition for intense muon sources (chicane + the rest of the front end) Pavel Snopok Illinois Institute of Technology and Fermilab December 4,
1 Optical Diagnostic Results of MERIT Experiment and Post-Simulation H. Park, H. Kirk, K. McDonald Brookhaven National Laboratory Princeton University.
The Earth Matter Effect in the T2KK Experiment Ken-ichi Senda Grad. Univ. for Adv. Studies.
IDS120j WITHOUT GAPS AND WITH MAXIMUM SIZE GAPS ( aka ''NIGHTMARE'' CASE SCENARIO ) SC#4, SC#7 AZIMUTHAL DPD DISTRIBUTION ANALYSIS. Nicholas Souchlas,
IDS120h GEOMETRY WITH MODIFIED Hg POOL VESSEL. SIMULATIONS FOR 60%W+40%He SHIELDING (P12 'POINT') WITH STST SHIELDING VESSELS EFFECTS OF Be WINDOW WATER.
SHIELDING STUDIES FOR THE MUON COLLIDER TARGET. (From STUDY II to IDS120f geometries) NICHOLAS SOUCHLAS (BNL)‏ ‏ 1.
Shifting the Position of Focal Point of Proton Beam Relative to Intersection Point with Fixed Emittance for IDS120h Configuration X. Ding, UCLA Target.
Synchrotron radiation at eRHIC Yichao Jing, Oleg Chubar, Vladimir N. Litvinenko.
DEPOSITED POWER STUDIES FOR THE MC/NF TARGET STATION. Nicholas Souchlas (PBL) (MAP CONFERENCE SLAC 2012) 1 DEPOSITED POWER STUDIES FOR THE MC/NF TARGET.
1 Energy Deposition of 4MW Beam Power in a Mercury Jet Target X. Ding, D. B. Cline UCLA H. Kirk, J. S. Berg BNL The International Design Study for the.
IDS120j WITH GAPS SC#3 AZIMUTHAL DPD DISTRIBUTION ANALYSIS WITH MAX GAPS SC#3, SC#4 AZIMUTHAL DPD DISTRIBUTION ANALYSIS, DP AND SC TOTAL DP WITH VARYING.
IDS120h GEOMETRY WITH MODIFIED Hg POOL VESSEL. SIMULATIONS FOR 60%W+40%He SHIELDING (P12 'POINT') WITH STST SHIELDING VESSELS. BP#1(STST/W), SH#1, BeWindow,SC#8.
Particle Production at 3 GeV (update) X. Ding, UCLA Target Studies Sept. 23, /23/13.
Gallium as a Possible Target Material for a Muon Collider or Neutrino Factory X. Ding, D. Cline, UCLA, Los Angeles, CA 90095, USA J.S. Berg, H.G. Kirk,
IDS120j WITHOUT RESISTIVE MAGNETS: NEW Hg MODULE mars1510 ( DESKTOP ) vs. mars1512 ( PRINCETON CLUSTER ) Nicholas Souchlas, PBL (3/28/2012) 1.
Particle Production of Carbon Target with 20Tto2T5m Configuration at 6.75 GeV (Updated) X. Ding, UCLA Target Studies April 3, /3/14.
Beam Dump for Carbon Target with IDS120h Configuration at 6.75 GeV (Updated) X. Ding, UCLA Target Studies Jan. 24, /24/14.
Kinetic Energy Spectra of pi +, pi -, mu +, mu - and sum of all from the 20to4T5m Configuration X. Ding Front End Meeting June 23,
Meson Production of Carbon Target at 3 GeV X. Ding, UCLA Target Studies 17/18/13.
Carbon Target Design and Optimization for an Intense Muon Source X. Ding, UCLA H.G. Kirk, BNL K.T. McDonald, Princeton Univ MAP Winter Collaboration.
Chicane shielding and energy deposition (IPAC’13 follow-up) Pavel Snopok IDS-NF phone meeting June 4, 2013.
IDS120j WITHOUT RESISTIVE MAGNETS ( 20 cm GAPS AND 15.8 g/cc W BEADS ) AZIMUTHAL DPD DISTRIBUTION STUDIES FOR: BP#1, SH#1, SHVS#1/LFL, SC#1+SC#2, BeWind.
Multiprocessing/MARS15(2012)/Princeton Cluster (IDS120j w/t Resistive Magnets: New Hg Module) X. Ding UCLA (4/11/2013)
IDS120j WITHOUT RESISTIVE MAGNETS MODIFYING Hg MODULE Nicholas Souchlas, PBL (11/1/2012) 1.
Simulations on “Energy plus Transmutation” setup, 1.5 GeV Mitja Majerle, V Wagner, A Krása, F Křížek This document can be downloaded.
IDS120j WITH AND WITHOUT RESISTIVE MAGNETS PION AND MUON STUDIES WITHIN TAPER REGION, III ( 20 cm GAPS BETWEEN CRYOSTATS ) Nicholas Souchlas, PBL (9/4/2012)
Meson Production at Low Proton Beam Energy (Update) X. Ding, UCLA Target Studies May 9, /9/113.
IDS120j WITHOUT RESISTIVE MAGNETS SEMGENTATION STUDIES FOR BEAM PIPE BEYOND FIRST CRYOSTAT ( 20 cm GAPS AND 15.8 g/cc W BEADS ) Nicholas Souchlas, PBL.
IDS120j WITHOUT RESISTIVE MAGNETS SEMGENTATION STUDIES FOR BP#2 WITHIN FIRST CRYOSTAT AND RIGHT FLANGE OF Hg POOL INNER VESSEL ( 20 cm GAPS AND 15.8 g/cc.
Ids120h_side. ids120h_top ids120h_iso ids120h_end.
SHIELDING STUDIES FOR IDS80 (NO IRON PLUG/YOKE), ADDING SHIELDING IN 75 TO 80 cm (WC/H 2 O, B, Cd). NICHOLAS SOUCHLAS (BNL) Dec. 14, 2010‏ ‏ 1.
ENERGY FLOW AND DEPOSITION IN A 4-MW MUON-COLLIDER TARGET SYSTEM
M. Sullivan Apr 27, 2017 MDI meeting
Positron production rate vs incident electron beam energy for a tungsten target
IDS120h: PROTON P0-P14 TRAJECTORY FOOTPRINT
X. Ding, UCLA MAP Spring 2014 Meeting May 2014 Fermilab
IDS120j WITHOUT RESISTIVE MAGNETS: NEW Hg MODULE
1 Nicholas Souchlas, PBL (11/15/2011)
1 Nicholas Souchlas (PBL) (MAP CONFERENCE SLAC 2012)
M. Calviani, A. Ferrari (EN/STI), P. Sala (INFN)
Presentation transcript:

IDS120i GEOMETRY. SIMULATIONS FOR 60%W+40%He SHIELDING WITH STST SHIELDING VESSELS. Hg vs. Ga DEPOSITED POWER DISTRIBUTION. (using Ding's optimized parameters) SC#1 AND SC#2 AZIMUTHAL DEPOSITED POWER DISTRIBUTION STUDIES. Nicholas Souchlas, PBL (2/16/2012) 1

IDS120i GEOMETRY. # Hg vs. Ga DP DISTRIBUTION USING DING'S OPTIMIZED PARAMETERS FOR BOTH TARGETS (Np=100,000). # SC#1 AND SC#2 DPD AZIMUTHAL DISTRIBUTION SIMULATIONS (Np=300,000/400,000). >mars1510/MCNP > MeV NEUTRON ENERGY CUTOFF >SHIELDING:60%W+40%He ( WITH STST VESSELS) >4 MW proton beam,Np=1E5/3E5/4E5 events. >PROTONS ENERGY E=8 GeV. >GAUSSIAN PROFILE: σ x =σ y =0.12 cm(Hg)/0.132 cm(Ga). IDS120h: introducing shielding vessels (STST OR W) Different cases of shielding material. >mars1510/MCNP > MeV NEUTRON ENERGY CUTOFF >SHIELDING: 60%WC+40%H 2 O/60%WC+40%H 2 O/ >4 MW proton beam, Np=100,000 >PROTONS ENERGY E=8 GeV. >GAUSSIAN PROFILE: σ x =σ y =0.12 cm. IDS120h: introducing shielding vessels (STST OR W) Different cases of shielding material. >mars1510/MCNP > MeV NEUTRON ENERGY CUTOFF >SHIELDING: 60%WC+40%H 2 O/60%WC+40%H 2 O/ >4 MW proton beam, Np=100,000 >PROTONS ENERGY E=8 GeV. >GAUSSIAN PROFILE: σ x =σ y =0.12 cm. IDS120h: introducing shielding vessels (STST OR W) Different cases of shielding material. >mars1510/MCNP > MeV NEUTRON ENERGY CUTOFF >SHIELDING: 60%WC+40%H 2 O/60%WC+40%H 2 O/ >4 MW proton beam, Np=100,000 >PROTONS ENERGY E=8 GeV. >GAUSSIAN PROFILE: σ x =σ y =0.12 cm. IDS120h with shielding vessels. # Different cases of shielding material. # N=100,000 AND N=500,000 events simulation for 80%W+20%He SHIELDING # Energy counting for N=500,000 events simulation for 80%W+20%He SHIELDING >mars1510/MCNP > MeV NEUTRON ENERGY CUTOFF >SHIELDING:60%W+40%He, 80%W+20%He, 88%W+12%He ( WITH W VESSELS) >4 MW proton beam, Np=100,000/500,000 >PROTONS ENERGY E=8 GeV. >GAUSSIAN PROFILE: σ x =σ y =0.12 cm. IDS120h with shielding vessels. # Different cases of shielding material. # N=500,000 events simulation for 60%W+40%He AND 60%W+40%H 2 SHIELDING # Energy counting for N=500,000 events simulation for 80%W+20%He SHIELDING >mars1510/MCNP > MeV NEUTRON ENERGY CUTOFF >SHIELDING:60%W+40%He, 80%W+20%He, 88%W+12%He ( WITH W VESSELS) >4 MW proton beam, Np=100,000/500,000 >PROTONS ENERGY E=8 GeV. >GAUSSIAN PROFILE: σ x =σ y =0.12 cm. IDS120h with shielding vessels. # Different cases of shielding material. # N=500,000 events simulation for 60%W+40%He AND 60%W+40%H 2 SHIELDING # Energy counting for N=500,000 events simulation for 80%W+20%He SHIELDING >mars1510/MCNP > MeV NEUTRON ENERGY CUTOFF >SHIELDING:60%W+40%He, 80%W+20%He, 88%W+12%He ( WITH W VESSELS) >4 MW proton beam, Np=100,000/500,000 >PROTONS ENERGY E=8 GeV. >GAUSSIAN PROFILE: σ x =σ y =0.12 cm. IDS120h with shielding vessels. # Different cases of shielding material. # N=500,000 events simulation for 60%W+40%He AND 60%W+40%H 2 SHIELDING # Energy counting for N=500,000 events simulation for 80%W+20%He SHIELDING >mars1510/MCNP > MeV NEUTRON ENERGY CUTOFF >SHIELDING:60%W+40%He, 80%W+20%He, 88%W+12%He ( WITH W VESSELS) >4 MW proton beam, Np=100,000/500,000 >PROTONS ENERGY E=8 GeV. >GAUSSIAN PROFILE: σ x =σ y =0.12 cm. IDS120h with shielding vessels. # Different cases of shielding material. # N=500,000 events simulation for 60%W+40%He AND 60%W+40%H 2 SHIELDING # Energy counting for N=500,000 events simulation for 80%W+20%He SHIELDING >mars1510/MCNP > MeV NEUTRON ENERGY CUTOFF >SHIELDING:60%W+40%He, 80%W+20%He, 88%W+12%He ( WITH W VESSELS) >4 MW proton beam, Np=100,000/500,000 >PROTONS ENERGY E=8 GeV. >GAUSSIAN PROFILE: σ x =σ y =0.12 cm. IDS120h with shielding vessels. # Different cases of shielding material. # N=500,000 events simulation for 60%W+40%He AND 60%W+40%H 2 SHIELDING # Energy counting for N=500,000 events simulation for 80%W+20%He SHIELDING >mars1510/MCNP > MeV NEUTRON ENERGY CUTOFF >SHIELDING:60%W+40%He, 80%W+20%He, 88%W+12%He ( WITH W VESSELS) >4 MW proton beam, Np=100,000/500,000 >PROTONS ENERGY E=8 GeV. >GAUSSIAN PROFILE: σ x =σ y =0.12 cm. IDS120h with shielding vessels. # Different cases of shielding material. # N=500,000 events simulation for 60%W+40%He AND 60%W+40%H 2 SHIELDING # Energy counting for N=500,000 events simulation for 80%W+20%He SHIELDING >mars1510/MCNP > MeV NEUTRON ENERGY CUTOFF >SHIELDING:60%W+40%He, 80%W+20%He, 88%W+12%He ( WITH W VESSELS) >4 MW proton beam, Np=100,000/500,000 >PROTONS ENERGY E=8 GeV. >GAUSSIAN PROFILE: σ x =σ y =0.12 cm. IDS120h with shielding vessels. # Different cases of shielding material. # N=500,000 events simulation for 60%W+40%He AND 60%W+40%H 2 60%W+40%H 2 SHIELDING SHIELDING # Energy counting for N=500,000 events simulation for 80%W+20%He SHIELDING >mars1510/MCNP > MeV NEUTRON ENERGY CUTOFF >SHIELDING:60%W+40%He, 80%W+20%He, 88%W+12%He ( WITH W VESSELS) >4 MW proton beam, Np=100,000/500,000 >PROTONS ENERGY E=8 GeV. >GAUSSIAN PROFILE: σ x =σ y =0.12 cm. 2 IDS120hm: (m IS FOR) modified Hg pool vessel IN IDS120h. # BP#1, SH#1: 1E05 (2 DIFFERENT INITIALIZATIONS) AND 2E05 SIMULATIONS COMPARISON. # SC#8: 3E05 AND 4E05 SIMULATIONS. # BeWind: 1E05 SIMULATIONS. >mars1510/MCNP > MeV NEUTRON ENERGY CUTOFF >SHIELDING:60%W+40%He ( WITH STST VESSELS) >4 MW proton beam, Np=100,000/500,000 events. >PROTONS ENERGY E=8 GeV (P12 'POINT'). >GAUSSIAN PROFILE: σ x =σ y =0.12 cm. IDS120hm: (m IS FOR) modified Hg pool vessel IN IDS120h. # BP#1(STST), SH#1: 1E05 (2 DIFFERENT INITIALIZATIONS) AND 2E05 SIMULATIONS COMPARISON. # BP#1(STST):Hg vs. GA + BP#1: STST vs. W # SC#8: 3E05 (2 DIFFERENT INITIALIZATIONS) AND 4E05 SIMULATIONS. # BeWind: 1E05 SIMULATIONS. # Hg vs. Ga: 1E05 DP SIMULATIONS. >mars1510/MCNP > MeV NEUTRON ENERGY CUTOFF >SHIELDING:60%W+40%He ( WITH STST VESSELS) >4 MW proton beam, Np=100,000/500,000 events. >PROTONS ENERGY E=8 GeV (P12 'POINT'). >GAUSSIAN PROFILE: σ x =σ y =0.12 cm.

IDS120i:YZ CROSS SECTION AT y=0.0 (LEFT) AND UPPER HALF ONLY(RIGHT ). 3

CENTER OF BEAM PROTONS TRAJECTORY FOR Hg(BLACK) AND Ga(RED) TARGETS. (POOL SURFACE IN FIRST PLOT IS AT y= - 15 cm BUT FOR SIMULATIONS y= - 20 cm) Y X Z Z Hg TARGET: y= - 15 cm------> l(protons trajectory)> cm>14 IL(protons interaction length in Hg~ 15 cm) y= - 20 cm------> l(protons trajectory)> cm> 8 IL Ga TARGET: y= - 15 cm------> l(protons trajectory)> cm>5 IL(protons interaction length in Ga~ 24 cm) y= - 20 cm------> l(protons trajectory)= 0.0 cm (protons do not enter the pool) PROTONS ENTER Ga POOL NEAR THE CENTER AND HAVE A SHORT PATH, ONE WAY TO IMPROVE THIS IS BY SHIFTING THE POOL TO THE RIGHT(~ 100 cm) 4 )

5 CENTER OF BEAM PROTONS TRAJECTORY FOR Hg AND Ga TARGETS WITH JET AND POOL PRESENT(BUT NOT INTERACTING). POOL SURFACE IS AT y= cm Hg vs. Ga TARGET: IT APPEARS PROTONS INTERACT WITH Ga JET IN A LONGER REGION THAN IN THE Hg TO COMPANSATE FOR THE SMALLER SIZE Ga ATOMS. IS IT POSSIBLE TO ROTATE Ga JET TO ALLOW PROTONS ENTER SOONER THE POOL AND THEREFORE TRAVEL LONGER DISTANCE IN Ga POOL? Ga Hg

POWER DEPOSITED IN THE SC COILS 6 ABOUT SAME TOTAL AMOUNT OF DP FOR BOTH Hg AND Ga. NOTICEABLE DIFFERENCE IS THE SC#3 DP: ABOUT 3 TIMES MORE DP IN SC#3 FOR Ga TARGET.

SH#1A~ - 97 kW DECREASE, SH#1B~SAME, SH#2~ kW INCREASE. DP IS SPREAD OUT MORE DOWNSTREAM, MAINLY IN THE VOLUME REGION ENCLOSED BY SC#4-10, HIGH RISK OF DPD PEAK VALUES CLOSE/ABOVE ITER LIMIT. MORE ENERGY (~+ 165 kW) WILL BE DEPOSITED IN SHIELDING IN Ga TARGET. ABOUT SAME TOTAL DP IN VESSELS AND ABOUT SAME DISTRIBUTION. DEPOSITED POWER IN SHIELDING AND SHIELDING VESSELS. 7

POWER DEPOSITED IN RESISTIVE MAGNETS (RS#) AND BEAM PIPE (BP#). ABOUT 69 kW LESS DP IN RESISTIVE COILS IN Ga TARGET. BEAM PIPE DEPOSITED POWER DISTRIBUTION CONFIRMS THAT THE ENERGY IS SPREAD MORE DOWNSTREAM (INCREASE IN DP#2 BY MORE THAN 90 kW IN Ga TARGET) CONSISTENT WITH THE EXPECTATIONS FROM A ''SOFTER'' (SMALLER ATOMS) TARGET. 8

9 Ga TARGET RECIEVES ABOUT HALF THE POWER DEPOSITED IN Hg, WHILE Ga POOL ABOUT 13 kW LESS ENERGY THAN THAT IN Hg POOL. SINCE Ga ATOMS HAVE MUCH SMALLER ATOMIC NUMBER (31) THAN Hg ATOMS (80) A SMALLER NUMBER OF INTERACTIONS WILL OCCUR BETWEEN p AND Ga TARGET. A SMALLER NUMBER OF INTERACTIONS WILL ALSO TAKE PLACE BETWEEN PROTONS AND Ga ATOMS IN THE POOL. IN ADDITION SINCE Ga IS A ”SOFTER” TARGET THE SCATTERING ANGLES ARE SMALLER. MORE PROTONS IS EXPECTED TO END UP IN THE Ga POOL. THAT WILL SOMEHOW MITIGATE THE EFFECT OF THE INTERACTION LENGTH p-Ga ''DISSADVANTAGE'' AND AT THE END WE GET ABOUT THE SAME DP IN Hg AND Ga POOLS(ASSUMMING MOST OF THE DP IN THE POOL IS DUE TO PROTONS AND/OR THE DP FROM OTHER RADIATION SOURCES IS ABOUT THE SAME FOR BOTH CASES. Be WINDOW ABOUT SAME DP FOR BOTH TARGETS. SUMMARY FOR TOTAL POWER DEPOSITED IN DIFFERENT COMPONENTS IN TARGET STATION.

10 AZIMUTHALLY AVERAGE DEPOSITED POWER DENSITY PEAKS IN SC#1-12. THE PEAK VALUES IN BOTH Hg AND Ga TARGETS ARE VERY SIMILAR AND THE ONLY SIGNIFICANT DIFFERENCE IS OBSERVED IN SC#3.

IDS120i: AZIMUTHALLY AVERAGE DEPOSITED ENERGY DISTRIBUTION FROM Np=400,000 EVENT SIMULATION THE MARS PLOT FOR THE AZIMUTHALLY AVERAGE DEPOSITED ENERGY DISTRIBUTION WILL BE USED TO ISOLATE THE SCs AREAS OF INTEREST AND PERFORM A SEGMENTATION STUDY. OTHER AREAS MAY HAVE ISOLATED SPIKES IN THE DPD, IN SOME DIRECTION, AND OVERALL SMALL AVERAGE AZIMUTHAL DPD BUT WE START WITH THE MOST OBVIOUS AND HIGHT RISK AREAS DETERMINED FROM THE ABOVE PLOT. 11

SH#1 AZIMUTHAL SEGMENTATION STUDIES 12

IDS120hm:SC#8 AZIMUTHAL SEGMENTATION PLOTS < r < cm dr=2.495 cm N r =2 bins < z < cm dz=10.0 cm N z =6 bins 0.0 < φ < deg d φ =30.0 deg. N φ =12 bins Ntot=144 “pieces” 16 IDS120i:SC#1 PARTIAL SEGMENTATION YZ CROSS SECTION y=0.0 (LEFT) AND YX CROSS SECTION z= cm (RIGHT) Z Y < r < cm dr= 5.0 cm N r =2 bins < z < cm dz=10.0 cm N z =19 bins 0.0 < φ < cm dφ=10.0 cm N φ =12 bins N tot =456 ''pieces'' < r < cm dr= 5.0 cm N r =2 bins < z < cm dz=10.0 cm N z =19 bins 0.0 < φ < deg. dφ=30.0 deg. N φ =12 bins N tot =456 ''pieces''

TOP TEN DEPOSITED POWER DENSITIES (DPD) FOR SC#8 FOR 3 SIMULATIONS Np=3E05 EVENTSNp=4E05 EVENTSNp=3E05 EVENTS(NE) 17 SC#1 APPEARS TO HAVE A SPOT WITH DPD>0.15 mW/g. SIMULATIONS WITH LARGER NUMBER OF EVENTS MAYBE NECESSARY WORK IS IN PROGRESS SC#1 SUM(PARTIAL) SUM OF DEPOSITED POWER USING TOTAL FROM 456 “PIECES” 0.225(0.0051) kW 0.222(0.0047) kW 0.?(0.?)kW vs kW WITHOUT SEGMENTATION FROM 1E05 EVENTS TOP TEN DEPOSITED POWER DENSITIES FOR SC#1 FOR 3 SIMULATIONS. 14 SH#1 APPEARS TO HAVE A SPOT WITH DPD>0.15 mW/g. STATISTICAL FLUCTUATIONS CAN BE SIGNIFICANT FOR A VOLUME AT IR=120 cm WHERE VERY LITTLE ENERGY IS DEPOSITED AND THERE IS MORE UNIFORMITY IN THE AZIMUTHAL DPD DISTRIBUTION. SIMULATIONS WITH LARGER NUMBER OF EVENTS/LARGER VOLUMES MAYBE NECESSARY. WORK IN PROGRESS. SC#1 SUM(PARTIAL) OF DEPOSITED POWER USING PARTIAL SUM FROM 456 “PIECES” 0.225(0.0051)kW 0.222(0.0047) kW 0.187(0.0041) kW vs kW WITHOUT SEGMENTATION FROM 4E05 EVENTS

SH#2 AZIMUTHAL SEGMENTATION STUDIES 15

IDS120i:SC#2 PARTIAL SEGMENTATION YZ CROSS SECTION y=0.0 (LEFT) AND YX CROSS SECTION z=158.0 cm (RIGHT) 16 Y Z < r < cm dr= 5.0 cm N r =2 bins < z < cm dz=10.93 cm N z =7 bins 0.0 < φ < deg. dφ=30.0 deg. N φ =12 bins N tot =168 ''pieces''

TOP TEN DEPOSITED POWER DENSITIES (DPD) FOR SC#8 FOR 3 SIMULATIONS Np=3E05 EVENTSNp=4E05 EVENTSNp=3E05 EVENTS(NE) 17 SC#1 APPEARS TO HAVE A SPOT WITH DPD>0.15 mW/g. SIMULATIONS WITH LARGER NUMBER OF EVENTS MAYBE NECESSARY WORK IS IN PROGRESS SC#1 SUM(PARTIAL) SUM OF DEPOSITED POWER USING TOTAL FROM 456 “PIECES” 0.225(0.0051) kW 0.222(0.0047) kW 0.?(0.?)kW vs kW WITHOUT SEGMENTATION FROM 1E05 EVENTS TOP TEN DEPOSITED POWER DENSITIES FOR SC#2 FOR 3 SIMULATIONS. 14 SC#2 APPEARS TO HAVE AN ISOLATED HOT SPOT WITH DPD~0.174 mW/g WORK IN PROGRESS SC#2 SUM(PARTIAL) SUM OF DEPOSITED POWER USING TOTAL FROM 168 “PIECES” 0.?(0.?) kW ( ) kW 0.?(0.?)kW vs kW WITHOUT SEGMENTATION FROM 1E05 EVENTS 17 SH#2 ALSO APPEARS TO HAVE AN ISOLATED SPOT WITH DPD>0.15 mW/g. STATISTICAL FLUCTUATIONS CAN BE REALTIVELY LARGE FOR THE SC#2 DPD DISTRIBUTION. THAT IS ANOTHER UNCERTAINTY IN THE DETERMINATION OF HOT SPOTS. IT IS NECESSARY TO RUN MANY JOBS TO GET AN ESTIMATION OF THE STATISTICAL FLUCTUATION. SC#2 SUM(PARTIAL) OF DEPOSITED POWER USING PARTIAL SUM FROM 168 “PIECES” 0.038( ) kW 0.036( ) kW ( ) kW vs kW WITHOUT SEGMENTATION FROM 3E05 EVENTS