Real Numbers Chapter 1 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 1-1.

Slides:



Advertisements
Similar presentations
§ 1.10 Properties of the Real Number System. Angel, Elementary Algebra, 7ed 2 Commutative Property Commutative Property of Addition If a and b represent.
Advertisements

Section 1.1 Part II Properties of Numbers, Equality, and Inequality.
Multiplying and Dividing Real Numbers; Properties of Real Numbers
Properties of Real Numbers. Closure Property Commutative Property.
(2 + 1) + 4 = 2 + (1 + 4) Associative Property of Addition.
PROPERTIES REVIEW!. MULTIPLICATION PROPERTY OF EQUALITY.
Chapter 1 Basic Concepts.
Properties of Real Numbers
1 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 2-1 Equations and Inequalities Chapter 2.
Chapter 6 Polynomial Functions and Inequalities. 6.1 Properties of Exponents Negative Exponents a -n = –Move the base with the negative exponent to the.
Copyright © 2012, 2009, 2005, 2002 Pearson Education, Inc. Chapter 2 Fractions.
Copyright © 2014, 2010, 2006 Pearson Education, Inc. Section 2.2, Slide 1 Equations, Inequalities, and Applications 2.
Properties of Equality, Identity, and Operations September 11, 2014 Essential Question: Can I justify solving an equation using mathematical properties?
MTH Algebra PROPERTIES OF THE REAL NUMBER SYSTEM CHAPTER 1 SECTION 10.
Copyright © 2010 Pearson Education, Inc. All rights reserved Sec
Algebra II Honors Properties Review Chapter 1. We will solve 2x + 4 = 6x – 12 Showing all of the properties used So Let’s go!
Chapter 2 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 2-1 Solving Linear.
Copyright © 2010 Pearson Education, Inc. All rights reserved. 1.7 – Slide 1.
Chapter 1 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 1-1 Real Numbers.
1 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 1-1 Basic Concepts Chapter 1.
Properties of Real Numbers 1.Objective: To apply the properties of operations. 2.Commutative Properties 3.Associative Properties 4.Identity Properties.
Section 1.3 Properties. Properties of Equality Reflexive Property: a=a Symmetric Property: If 3=x, then x=3 Transitive Property: If x=y and y=4 then x=4.
by D. Fisher (2 + 1) + 4 = 2 + (1 + 4) Associative Property of Addition 1.
(2 + 1) + 4 = 2 + (1 + 4) Associative Property of Addition.
Section 4Chapter 1. 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives Properties of Real Numbers Use the distributive property.
Sect. 1.2 Operations & Properties of Real Numbers  Absolute Value  Inequalities  Addition, Subtraction, Opposites  Multiplication, Division, Reciprocals.
Copyright © 2014, 2010, and 2006 Pearson Education, Inc. Chapter 1 Introduction to Algebraic Expressions.
Chapter 1 Sections 1.1 and 1.2. Objectives: To use the order of operations to evaluate expressions. To determine the sets of numbers to which a given.
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapter 1 Real Numbers and Introduction to Algebra.
223 Reference Chapter Section R2: Real Numbers and Their Properties Natural Numbers: {1, 2, 3, 4, …} Whole Numbers: {0, 1, 2, …} Integers: {…, -3, -2,
Properties of Operations Lesson 2Power Up APage 13.
Chapter 1 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 1-1 Real Numbers.
by D. Fisher (2 + 1) + 4 = 2 + (1 + 4) Associative Property of Addition 1.
(2 + 1) + 4 = 2 + (1 + 4) Associative Property of Addition.
Distributive Commutative Addition Zero Property Additive Inverse 0 Multiplicative Identity Commutative Multiplication Multiplicative Inverse Additive Identity.
Real Numbers Chapter 1 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 1-1.
Objective- To justify the step in solving a math problem using the correct property Distributive Property a(b + c) = ab + ac or a(b - c) = ab - ac Order.
(2 x 1) x 4 = 2 x (1 x 4) Associative Property of Multiplication 1.
Chapter 2 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 2-1 Solving Linear Equations and Inequalities.
Chapter 1 Section 1.3 Properties of and Operations with Real Numbers.
Properties of Algebra. 7 + ( ) = ( ) + 9.
Chapter 1 Review. Examples: Write the numeric expression 1.) Eight more than a number n 2.) The difference of six and a number 3.) The product of three.
Chapter Sections 1.1 – Study Skills for Success in Mathematics
Properties of Real Numbers
Properties of Operations
Commutative Property of Addition
Objective The student will be able to:
Copyright © 2011 Pearson Education, Inc.
CHAPTER R: Basic Concepts of Algebra
Properties of Real Numbers
Copyright 2013, 2010, 2007, 2005, Pearson, Education, Inc.
Properties of Real Numbers
Algebra 1 Section 2.2 Add real numbers
Algebra II Unit 1 Test Review: Equations and Inequalities
Properties of Addition and Multiplication
Properties for Addition and Multiplication only
Real Numbers and Number Operations
Chapter 1 Real Numbers.
Commutative and Associative Properties
The Real Numbers And Their Representations
You will need to supply your own calculators for this course---you will need either a TI-82 or a TI-84 graphing calculator.
Indicator 10 Solving Inequalities.
Several Transformations
Real Numbers.
Solving Linear Equations
Chapter Sections 1.1 – Study Skills for Success in Mathematics
Properties A property is something that is true for all situations.
Real Numbers.
Warm-Up Find the slope of 4y = 3x + 21 Solve -3x – 5 = x + 12
Properties of Real Numbers
Presentation transcript:

Real Numbers Chapter 1 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 1-1

2 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter – Study Skills for Success in Mathematics 1.2 – Problem Solving 1.3 – Fractions 1.4 – The Real Number System 1.5 – Inequalities and Absolute Value 1.6 – Addition of Real Numbers 1.7 – Subtraction of Real Numbers 1.8 – Multiplication and Division of Real Numbers 1.9 – Exponents, Parentheses and Order of Operations 1.10 – Properties of the Real Number System Chapter Sections

3 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 1-3 Properties of the Real Number System

4 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 1-4 Commutative Property Commutative Property of Addition If a and b represent any two real numbers, then a + b = b + a = Commutative Property of Multiplication If a and b represent any real numbers, then a · b = b · a 6 · 3 = 3 · 6 Commutative (commute) changes the order. *Note that the commutative property does not hold for subtraction and division 7 = 7 18 = 18

5 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 1-5 Associative Property Associative Property of Addition If a, b, and c represent three real numbers, then (a + b) + c = a + (b + c) (3 + 4) + 5 = 3 + (4 + 5) Associative Property of Multiplication If a, b, and c represent any three real numbers, then (a · b) · c = a ·(b · c) (6 · 2) · 4 = 6 · (2 · 4) Associative (associate) changes the grouping. *Note that the associative property does not hold for subtraction and division = = · 4 = 6 · 8 48 = 48

6 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 1-6 Distributive Property If a, b, and c represent three real numbers, then a(b + c) = ab + ac Distributive involves two operations (usually multiplication and division). 2(3 + 4) = 2(3) + 2(4) 2(7) = = 14

7 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 1-7 Identity Properties If a represents any real number, then a + 0 = a and 0 + a = a a · 1 = a and 1 · a = a Identity Property of Addition Identity Property of Multiplication = = 4 13 · 1 = 13 1 · 13 = 13

8 Copyright © 2015, 2011, 2007 Pearson Education, Inc. Chapter 1-8 Inverse Properties If a represents any real number, then a + (-a)= 0 and (-a) + a = 0 Inverse Property of Addition Inverse Property of Multiplication a · = 1 and · a = a (a  0) 7 + (-7) = 0 (-7) + 7 = 0 12 · = 1 · 12 = 1