Do we have sufficient data for an amplitude analysis of meson production? K. Nakayama University of Georgia EIC Workshop: Physics with Secondary Hadron.

Slides:



Advertisements
Similar presentations
Neutrino-induced meson production model for neutrino oscillation experiments Satoshi Nakamura Nuclear Theory Group.
Advertisements

1 Collaborators Johan Durand, CEA - Saclay Jun He, CEA - Saclay Zhenping Li, Univ. of Maryland Qiang Zhao, IHEP - Beijing PLAN:  Motivations  Chiral.
Status of two pion production in πN IntroductionIntroduction Summary of ππN dataSummary of ππN data Isobar-model formalismIsobar-model formalism Parametrization.
Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) Guan Yeu Chen (Taipei) 18th International Conference on “Few-body Problems.
Status of Baryon Spectroscopy D. Mark Manley Kent State University Kent, OH USA GHP2004 First Meeting of the APS Topical Group on Hadronic Physics.
Eugene Pasyuk Jefferson Lab for the CLAS Collaboration Moscow, September 20-23, 2012 XIII International Seminar on Electromagnetic Interactions of Nuclei.
Highlights on hadron physics at CLAS K. Hicks JAEA Seminar May 18, 2012.
HL-ch.3 Sept. 2002Student Seminar Subatomic Physics1 Seminar Subatomic Physics Chapter 3: New developments in hadronic particle production Nucleon resonances.
Generalities of the approaches for extraction of N* electrocouplings at high Q 2 Modeling of resonant / non resonant contributions is needed and should.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Y. Ikeda and T. Sato (Osaka Univ.) ストレンジ・ダイバリオンの 質量と崩壊幅の研究 KNN resonance (Recent theoretical progress) KNN resonance (Recent theoretical progress) Faddeev.
Yoichi Ikeda (Osaka Univ.) in collaboration with Hiroyuki Kamano (JLab) and Toru Sato (Osaka Univ.) Introduction Introduction Our model of KN interaction.
Dynamical Coupled Channel Approach for Meson Production Reaction T. Sato Osaka U./KEK  Motivation  Analysis of meson production reaction and dynamical.
Study of hadron properties in cold nuclear matter with HADES Pavel Tlustý, Nuclear Physics Institute, Řež, Czech Republic for the HADES Collaboration ,
1 Consequences for Future Multichannel Analyses of Electromagnetic Scattering Data if a Hadronic Beam Facility is not Built D. Mark Manley Kent State University.
Meson spectroscopy with unitary coupled-channels model Satoshi Nakamura Excited Baryon Analysis Center (EBAC), JLab Collaborators : H. Kamano (RCNP), T.-S.H.
Workshop on LEPS/SPring-8 new beamline, 28~29 July 2005, RCNP, Japan  + photoproduction with vector K* (including other recent results) Seung-il Nam *1,2.
New Multichannel Partial-Wave Analysis Including ηN and KΛ Channels D. Mark Manley Kent State University IntroductionIntroduction Physics MotivationPhysics.
Nucleon resonance studies in π + π - electroproduction off protons at high photon virtualities E. Isupov, EMIN-2009.
K*Λ(1116) Photoproduction and Nucleon resonances K*Λ(1116) Photoproduction and Nucleon resonances Sang-Ho Kim( 金相鎬 ) (NTG, Inha University, Korea) In collaboration.
Workshop on “Extractions and interpretations of hadron resonances and multi-meson production reactions with 12 GeV upgrade”, May 27-28, 2010 Cascade Baryons:
Baryon Spectroscopy: Recent Results and Impact – , Erice R. Beck HISKP, University of Bonn Introduction Impact of the new Polarization.
Magnetic moments of baryon resonances Teilprojekt A3 Volker Metag II. Physikalisches Institut Universität Giessen Germany SFB/TR16 Mitgliederversammlung.
N* Production in α-p and p-p Scattering (Study of the Breathing Mode of the Nucleon) Investigation of the Scalar Structure of baryons (related to strong.
Dynamical Coupled-Channels Approach for Single- and Double-Pion Electroproductions: Status and Plans Hiroyuki Kamano Research Center for Nuclear Physics.
Dynamical coupled-channels analysis of meson production reactions at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
Dynamical coupled-channels study of meson production reactions from Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) MENU2010,
Nstars: Open Questions Nstars: Open Questions L. Tiator, Institut für Kernphysik, Universität Mainz  Introduction  Roper and S 11  the role of the D.
Kaon Production on the Nucleon D. G. Ireland MENU Rome, September 30 – October 4, 2013.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
N* analysis at the Excited Baryon Analysis Center of JLab Hiroyuki Kamano (EBAC, Jefferson Lab) CLAS12 2 nd European Workshop, March 7-11, Paris, France.
Results of Nucleon Resonance Extraction via Dynamical Coupled-Channels Analysis from EBAC Hiroyuki Kamano (RCNP, Osaka U.) QNP2012, Palaiseau,
Daniel S. Carman Page 1 Hadron Sep , 2015 Daniel S. Carman Jefferson Laboratory N* Spectrum & Structure Analysis of CLAS Data  CLAS12 N*
Baryon Resonance Analysis from MAID D. Drechsel, S. Kamalov, L. Tiator.
Dynamical Coupled-Channels Approach to Meson Production Reactions and N* Spectroscopy Hiroyuki Kamano (RCNP, Osaka U.) April 11, 2012.
Photoproduction of Pentaquarks Seung-il Nam *1,2 Atsushi Hosaka 1 Hyun-Chul Kim 2 1.Research Center for Nuclear Physics (RCNP), Osaka University, Japan.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Dynamical coupled-channels approach to meson production reactions in the N* region and its application to neutrino-nucleon/nucleus reactions Hiroyuki Kamano.
Study of Excited Nucleon States at EBAC: Status and Plans Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz,
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Overview of the progress B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain) The players: ¨
The status of the Excited Baryon Analysis Center B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain)
Multichannel Partial-Wave Analysis of Scattering Hongyu Zhang Tallahassee, FL October 12, 2005.
Shin Nan Yang National Taiwan University Collaborators: Guan Yeu Chen (Taipei) Sabit S. Kamalov (Dubna) D. Drechsel, L. Tiator (Mainz) DMT dynamical model.
U-spin and the Radiative decay of Strange Baryons K. Hicks and D.Keller EM Transition Form Factor Workshop October 13, 2008.
The Durham HepData Project Reaction Database The George Washington University Data Analysis Center EBAC Bonn- Gatchina MAID SAID Databases: need and role?
Reaction models of meson production reactions B. Juliá-Díaz Departament d’Estructura i Constituents de la Matèria Universitat de Barcelona (Spain)
Photoproduction of Cascade baryons Yongseok Oh (UGA) H. Haberzettl (GWU) K. Nakayama (UGA) nucl- th/
Study of nucleon resonances at Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab) in collaboration with B. Julia-Diaz, T.-S. H.
Dynamical coupled-channels study of hadron resonances and strangeness production Hiroyuki Kamano (RCNP, Osaka U.) in collaboration with B. Julia-Diaz (Barcelona.
Qiang Zhao Theory Division Institute of High Energy Physics, CAS Update of quark model calculations for vector meson photoproduction.
Spectroscopy of S=-1 hyperon resonances with antikaon-induced meson-production reactions Hiroyuki Kamano (KEK) December 12th, 2016.
Satoshi Nakamura (Osaka University)
Extracting h-neutron interaction from g d  h n p data
EBAC-DCC analysis of world data on pN, gN, and N(e,e’) reactions
Comprehensive study of S = -1 hyperon resonances via the coupled-channels analysis of K- p and K- d reactions Hiroyuki Kamano (KEK) 2016 JAEA/ASRC Reimei.
Three-body hadronic molecules.
Toward a Model Independent Determination of Resonance Parameters
Mainz: Drechsel, Tiator Taipei: Guan Yeu Chen, SNY
Time Reversal Invariance in electromagnetic interactions
Comprehensive study of S = -1 hyperon resonances via the coupled-channels analysis of K- p and K- d reactions Hiroyuki Kamano (KEK) YITP Workshop on.
Regge Description of
Meson Production reaction on the N* resonance region
Current Status of EBAC Project
EBAC-DCC combined analysis of world data on pN and gN processes
Michael Dugger* Arizona State University
On the analytic structure of the KN - pS scattering amplitudes
Hiroyuki Kamano (Excited Baryon Analysis Center, Jefferson Lab)
Presentation transcript:

Do we have sufficient data for an amplitude analysis of meson production? K. Nakayama University of Georgia EIC Workshop: Physics with Secondary Hadron Beams in 21st Century April 7, 2012, GWU Collaboration: M. Döring, J. Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meiβner, and D. Rönchen ….. (JZ-Jülich) F. Huang and K. Nakayama ………………………………………………..……. (UGA-Athens/GA) H. Haberzettl ………………………………………… (GWU-Washington/DC)

Hadron Spectroscopy: to help ultimately understand the confinement property of QCD Baryon spectroscopy (mandatory):  Tools: hadro- and photo-induced reactions for studying baryon resonances  Relevant degrees-of-freedom: QCD  quarks and gluons Experiment  hadrons (baryons and mesons)  From experiment to QCD: reaction theory needed to extract the relevant quantities from experiment which can be connected directly to QCD and/or QCD-based models.  Reaction Theory: dynamical coupled-channels (DCC) approaches: (EBAC, JAW, DMT, Utrecht-Ohio, …)  analyticity  causality  unitarity  channel couplings  gauge invariance (photo-induced reactions)... JAW = Jülich-Athens/GA-Washington/DC

Hadron Spectroscopy: to help ultimately understand the confinement property of QCD Data Analysis (extraction of resonances):  If complete and accurate experimental data were available:  unique partial-wave amplitude A(W) as a function of energy W.  analytically continue A(W) to the complex energy-plane to extract the resonance poles and residues (transition form factors).  But, data are not complete and have error-bars:  reaction models for A(W) constrained by incomplete data with finite accuracy.  DCC approaches to A(W) (EBAC, JAW, DMT, …): analytic unitary (coupled-channels:  N,  N, K , K ,  N,  N,  N, , … ) gauge invariant...  Necessity of new generation of data for modern coupled-channels analyses:  photo-induced reactions: recent, high precision, some aiming for complete experiments) (JLAB, MAMI, ELSA, Spring8, GRAAL, … )  hadro-induced reactions: scarce, low-precision, old (60’-80’).

Channel opennings: hadro- & photo-induced reactions (+/- 150)  NN W (MeV) NN N’N’ NN KK KK NN N  one-meson productions:  N,  N   N,  N, K , K ,  N,  N,  ’N,  N … (two-body reactions)  KN  KN, …  KN  K  two-meson productions:  N,  N   N,  N, … (three-body reactions)  N,  N  KK  KKK ... channel opennings KK KN

meson production data in hadronic reactions: current situation

Baryons: resonance-energy region [s 1/2 < 3 GeV]

Overview of the data for pion-induced reactions < 3 GeV  N   N (SAID PWA): S11,S31,P11,P31, …, H19,H39 (SES) [ND~1558]

Database for EBAC DCC model (courtesy: H. Lee) Pion-induced reactions (purely strong reactions) Pion-induced reactions (purely strong reactions) Photo- production reactions Photo- production reactions ~ 28,000 data points to fit SAID

Overview of the data for pion-induced reactions < 3 GeV  N   N (SAID PWA): S11,S31,P11,P31, …, H19,H39 (SES) [ND~1558]

 N   N: partial-wave amplitudes [W < 2.6 GeV] (SAID) Curves: Jülich DCC model 2012

 N   N: partial-wave amplitudes [W < 2.6 GeV] (SAID) Curves: Jülich DCC model 2012

 N   N: partial-wave amplitudes [W < 2.6 GeV] (SAID) Curves: Jülich DCC model 2012

Existing data:  - p   n,  [W < 2.3 GeV]  - p   n various inconsistent data Detailed overview (selection & rating): Clajus & Nefkens,  N Newsletter 7, 76 (1992) Curve: Jülich DCC model 2012

Existing data:  - p   n,  [W < 2.3 GeV]  - p   n  p   p high-precision various inconsistent data Detailed overview (selection & rating): Clajus & Nefkens,  N Newsletter 7, 76 (1992) Curve: Jülich DCC model 2012

Existing data:  - p   n, d  /d  [W < 2.4 GeV] various inconsistent data Detailed overview (selection & rating): Clajus & Nefkens,  N Newsletter 7, 76 (1992) Prakhov 05 Bayadilov 08 Morrison 00 Kozlenko 03 Debenham 75 Deinet 69 (***) Richards 70 Feltesse 75 * 1.49 < W<1.58 GeV Curves: Jülich DCC model 2012

Existing data:  - p   n, d  /d  [W < 2.4 GeV] various inconsistent data Detailed overview (selection & rating): Clajus & Nefkens,  N Newsletter 7, 76 (1992) 1.59 < W < 1.95 GeV 1.99 < W < 2.41 GeV Debenham 75 Deinet 69 (***) Richards 70 Brown 79 (suggested to be eliminated from the data base) * Curves: Jülich DCC model 2012

Existing data:  - p   n, hadro- vrs photo-reaction  - p   n  p   p CLAS’09

Existing data:  - p   n, polarization [1.74 < W<2.23 GeV] 1.74 < W < 2.02 GeV 1.74 < W < 1.95 GeV 2.07 < W < 2.23 GeV Data: Baker et al., NPB156’79 Detailed overview (selection & rating): Clajus & Nefkens,  N Newsletter 7, 76 (1992) (suggested to be eliminated from the data base) some data points > 1 Curves: Jülich DCC model 2012

Existing data:  - p   n,  [W<2.3] & d  /d  [W < 2 GeV] Data: Karami et al., NPB154’79 Keyne et al., PRD14’76 Binnie et al., PRD8’73 Danburg et al., PRD2’70 Data: Karami et al., NPB154’79 Danburg et al., PRD2’70 Binnie et al., PRD8’73 Controversy? : Sibirtsev & Cassing, EPJA7’00 Titov et al., arXiv:nucl-th/ Hanhart et al., arXiv:hep-ph/ Penner & Mosel, arXiv:nucl-th/ needs to be re-measured (HADES at GSI)

Existing data:  -+ n   p, spin density matrices [1.8 < W < 2.3 GeV] : natural x unnatural parity t-channel exchange Data: Danburg et al., PRD2’70

Existing data:  N   ’ N,  [W < 2.3 GeV]  N   ’N  large uncertainties  no other observable exists

Existing data:  N   ’ N,  [W < 2.3 GeV]  p  ’ p  N   ’N high-precision CLAS’09  large uncertainties  no other observable exists

Existing data:  N   N,  N,   N   N  N   N W < 1.9 GeV  large uncertainties  no other observable exists HADES at GSI: plan to measure  N   N t > -0.6 GeV 2

Existing data:  N  KY,   - p  K +  -  - p  K 0  0  + p  K +  +  - p  K 0  Curves: Jülich DCC model 2012

Selected data:  N  KY, d  /d   - p  K 0   - p  K 0  0  - p  K +  -  + p  K +  + Curves: Jülich DCC model 2012

Selected data:  - p  K 0 , polarization  W < 1.8 GeV  very large uncertainties for cos(  ) < 0  several data points > 1  W < 1.94 GeV W =2.260, GeV Curves: Jülich DCC model 2012

Selected data:  - p  K 0  0, polarization  large uncertainties  data sets not consistent at all points  several data points > 1  W < 1.91 GeV  W < 2.32 GeV  data for the K +  - channel are limited (no polarization data below 2.7 GeV) Curves: Jülich DCC model 2012

Existing data:  - p  K 0 , K +  +, spin rotation parameter  W < 2.26 GeV  + p  K +  +  + p  K 0  Curves: Jülich DCC model 2012

Selected data:  N   N,  & d  /d   + p   +  +  n  - p   +  -  n Not many data: difficulty to constrain N*   N,  N,   N similarly for  + p   0  0 n (EBAC, PRC’08) Curves: EBAC, PRC’08 PRC58’98 Curves: Krewald, IJP’05 J-PARC: considering to measure  N   N

some observables: sensitivity to model details

Jülich DCC model: D. Rönchen, M. Döring, F. Huang et al., 2012 Jülich DCC model: D. Rönchen, M. Döring, F. Huang et al., 2012 Jülich Hadronic Model (TOPT): effective  N W < 2 GeV

Data sensitivity: polarization & spin rotation coefficient  + p  K +  + Rönchen et al., 2012 (in preparation) Döring et al., NPA851’11 Candline et al., NPB311’89 They all fit the cross section data equally well polarization spin rotation parameter

Data sensitivity:  - p  K +  +, polarization  + p  K +  +  (1920) P33 : most important resonance invisible in  N   N but needed in  + p  K +  +

Data sensitivity:  p   ’ p, beam asymmetry (Nakayama & Haberzettl, PRC73’06) d  /d  T: similar sensitivity as  

Model sensitivity: cross sections  N   ’  they reproduce the NN  NN  ’ cross section data equally well Jackson et al., ‘12 (tree-level) Doering et al., PRC78’08 (UChPT)  N   t > -0.6 GeV 2

Summary: database (hadr. react.): dismal situation  Hadro-induced meson production reaction data are badly needed for modern coupled-channels analyses in baryon spectroscopy:  Existing data in the non-strange sector are very scarce, especially the spin observables (no double-polarization observable), and suffer from large uncertainty problem.  Many data are inconsistent with each other (e.g.,  N   N) and/or of dubious reliability, requiring to be re-measured.  Better situation in the strangeness sector (K , K  ), although many of the polarization data require to be re-measured due to large uncertainties; only handful data points for double-polarization observable.  The lack of data in hadronic reactions is one of the major limitations for developing more accurate coupled-channels models:  Some spin observables are quite sensitivity to the details of the model.  In  N   N: difficulty to pin down N*   N,  N,   N HADES at GSI:  N  N,  N reactions (W< 2.4 GeV); no spin observables. J-PARC:  N  KY,  N; KN  K  KK 

The End

 p   ’p : Red: CBELSA/TAPS’09 Blue: CLAS’09 curves: Huang et al. ‘12

5 NN  NN  ’: data: COSY11’11, … curves: Huang et al. ‘12