Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab,

Slides:



Advertisements
Similar presentations
MEIC IR Design Yuhong Zhang EIC Generic R&D Advisory Committee Meeting December 13, 2012.
Advertisements

1 EIC Users Meeting, Stony Brook June 27, 2014 Request for these slides: Comment on “EIC working group activities at Jefferson Lab, and how people could.
March A. Chancé, J. Payet DAPNIA/SACM / Beta-beam ECFA/BENE Workshop The Decay Ring -First Design- A. Chancé, J.Payet CEA/DSM/DAPNIA/SACM.
Full-Acceptance Detector Integration at MEIC Vasiliy Morozov for MEIC Study Group Electron Ion Collider Users Meeting, Stony Brook University June 27,
IR Optics and Nonlinear Beam Dynamics Fanglei Lin for MEIC study group at JLab 2 nd Mini-workshop on MEIC IR Design, November 2, 2012.
Ion Collider Ring Design V.S. Morozov for MEIC study group MEIC Collaboration Meeting, JLab October 5-7, 2015.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility EIC Collaboration Meeting, Hampton University, May 19-23,
CASA Collider Design Review Retreat HERA The Only Lepton-Hadron Collider Ever Been Built Worldwide Yuhong Zhang February 24, 2010.
Adiabatic eRHIC Extraction June 3, 2015Stephen Brooks, eRHIC meeting1 With emittance growth analysis.
Chromaticity Correction & Dynamic Aperture in MEIC Ion Ring Fanglei Lin MEIC Detector and Interaction Region Designing Mini-Workshop, Oct. 31, 2011.
Page 1 Overview and Issues of the MEIC Interaction Region M. Sullivan MEIC Accelerator Design Review September 15-16, 2010.
Overview of IR Design V.S. Morozov 1, P. Brindza 1, A. Camsonne 1, Ya.S. Derbenev 1, R. Ent 1, D. Gaskell 1, F. Lin 1, P. Nadel-Turonski 1, M. Ungaro 1,
Current eRHIC IR Design  Important features  10 mrad crossing angle Needs to be integrated into the current STAR and upgrades Important for luminosity.
Preliminary Design of Electron Beam line F. Velotti, C. Bracco, B. Goddard and M. Meddahi.
MEIC Detector and IR Integration Vasiliy Morozov, Charles Hyde, Pawel Nadel-Turonski MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
IR-Design 0.44 m Q5 D5 Q4 90 m 10 mrad m 3.67 mrad 60 m m 18.8 m 16.8 m 6.33 mrad 4 m Dipole © D.Trbojevic 30 GeV e GeV p.
Detector / Interaction Region Integration Vasiliy Morozov, Charles Hyde, Pawel Nadel-Turonski Joint CASA/Accelerator and Nuclear Physics MEIC/ELIC Meeting.
Present MEIC IR Design Status Vasiliy Morozov, Yaroslav Derbenev MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
Compensation of Detector Solenoid G.H. Wei, V.S. Morozov, Fanglei Lin JLEIC Collaboration Meeting Spring, 2016.
E.C. AschenauerEIC INT Program, Seattle Week 81.
Full-Acceptance & 2 nd Detector Region Designs V.S. Morozov on behalf of the JLEIC detector study group JLEIC Collaboration Meeting, JLab March 29-31,
Interaction Region and Detector
MEIC Interaction Region & Tagging
Ion Collider Ring: Design and Polarization
LHeC interaction region
JLEIC Forward Ion Detection Region
Large Booster and Collider Ring
Non-linear Beam Dynamics Studies for JLEIC Electron Collider Ring
Final Focus Synchrotron Radiation
First Look at Nonlinear Dynamics in the Electron Collider Ring
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
Specifications for the JLEIC IR Magnets
LHC (SSC) Byung Yunn CASA.
Chromatic Corrections
Collider Ring Optics & Related Issues
Update on JLEIC Interaction Region Design
EIC Accelerator Collaboration Meeting
IR Lattice with Detector Solenoid
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Electron Ring IP Region Optics
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
Update on MEIC Nonlinear Dynamics Work
Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring
JLEIC High-Energy Ion IR Design: Options and Performance
Ion Collider Ring Using Superferric Magnets
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Status and plans for crab crossing studies at JLEIC
Alternative Ion Injector Design
Alejandro Castilla CASA/CAS-ODU
Update on JLEIC Electron Ring Design
Conventional Synchronization Schemes
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
Compensation of Detector Solenoids
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov (SLAC), M-H. Wang
JLEIC Collider Rings’ Geometry Options (II)
Progress Update on the Electron Polarization Study in the JLEIC
Integration of Detector Solenoid into the JLEIC ion collider ring
IR/MDI requirements for the EIC
Status of IR / Nonlinear Dynamics Studies
Possibility of MEIC Arc Cell Using PEP-II Dipole
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Upgrade on Compensation of Detector Solenoid effects
Arc FODO Cell Inventory
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC R&D Meeting, JLab, August 20, 2014
MEIC Alternative Design Part III
DYNAMIC APERTURE OF JLEIC ELECTRON COLLIDER
Compensation of Detector Solenoid Coherent Orbit Correction
Option 1: Reduced FF Quad Apertures
Presentation transcript:

Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab, November 2, 2012

V.S. Morozov 11/02/2012 Outline G4beamline/GEANT4 Model Ion and Electron Detector Region  Optics  Magnet Parameters  Acceptance, Momentum and Angle Resolution Current status of the design optimization High-luminosity interaction region Outlook and R&D

V.S. Morozov 11/02/2012 MEIC Full-Acceptance Detector

V.S. Morozov 11/02/2012 Detector’s 3D Model

V.S. Morozov 11/02/2012 Detector Region Magnets

V.S. Morozov 11/02/2012 GEANT4 Model Detector solenoid –4 T field at the center, 5 m long, 2.5 m inner radius, IP 2 m downstream from edge Small spectrometer dipole in front of the FFB –2 T 100 GeV/c), 1 m long, hard-edge uniform field –Interaction plane and dipole are rotated around z to compensate orbit offset FFB Big spectrometer dipole –4 m downstream of the FFB, sector bend, 3.5 m long, 60 mrad bending angle (21 Tm, GeV/c),  40 cm square aperture

V.S. Morozov 11/02/2012 Ion Detector Region Optics Downstream FFB: quad lengths = 1.2, 2.4, 1.2 m, quad 100 GeV/c = -89.0, 51.1, T/m 2 T 100 GeV/c) outward-bending dipole in front of the final focus 6 T 100 GeV/c) inward-bending dipole 4 m downstream of the final focus Ion beam IP x 4.4 m 7 m

V.S. Morozov 11/02/2012 Ion Magnet Parameters 50 mrad beam crossing angle NameTypeMax B (T) Max  B y /  x (T/m) Length (m) Inner radius (cm) Outer radius (cm) Distance from IP* (m) Beam separation** (cm) Notes Detector solenoidSC4N/A5250 Downstream ion side Ion spectrometer dipole 1 SC2N/A120525~60 mrad field rotation Septum? Downstream ion quad 1SC h/v orbit corrector? Downstream ion quad 2SC h/v orbit corrector? Downstream ion quad 3SC h/v orbit corrector? Ion spectrometer dipole 2 SC6N/A rectangular or sector? Upstream ion side Upstream ion quad 1SC h/v orbit corrector? Upstream ion quad 2SC h/v orbit corrector? Upstream ion quad 3SC h/v orbit corrector? * The distance is from the IP to the magnet side facing the IP ** The electron and ion beam separation is at the magnet side facing the IP Limited on e beam side by beam separation

V.S. Morozov 11/02/2012 Downstream Ion FFB Acceptance for Protons Quad apertures = B max / (field 100 GeV/c) 6 T max 9 T max 12 T max  electron beam

V.S. Morozov 11/02/2012 Downstream Ion FFB Acceptance for Protons Uniform spreads:  0.7 in  p/p and  1  in horizontal/vertical angle Apertures: Quads = 9, 9, 7 T / (  B y /  100 GeV/c)  electron beam

V.S. Morozov 11/02/2012 Downstream Ion FFB Acceptance for Neutrons 6 T max 9 T max 12 T max Neutrons uniformly distributed within  1  horizontal & vertical angles around proton beam Each quad aperture = B max / (field 100 GeV/c)  electron beam

V.S. Morozov 11/02/2012 Acceptance of Downstream Ion Final Focus Uniform distribution horizontally & vertically within  1  around protons Apertures: Quads = 9, 9, 7 T / (  B y /  100 GeV/c), Big Dipole = -30/+50  40 cm  electron beam  p/p = -0.5  p/p = 0  p/p = 0.5 neutrons

V.S. Morozov 11/02/2012 Forward Ion Momentum & Angle Resolution Protons with  p/p spread launched at different angles to nominal trajectory  electron beam ±10 60 GeV/c |  p/p| >  x,y = 0

V.S. Morozov 11/02/2012 Forward Ion Momentum & Angle Resolution Protons with different  p/p launched with  x spread around nominal trajectory |  x | > 3  p/p = 0  electron beam  electron beam ±10 60 GeV/c

V.S. Morozov 11/02/2012 Electron Detector Region Optics Similar to ion detector design Detector solenoid is not included Still need to address: –Transverse coupling –Effect on the polarization Electron beam IP x 4 m 3 m

V.S. Morozov 11/02/2012 Electron Magnet Parameters 50 mrad beam crossing angle NameTypeMax B (T) Max  B y /  x (T/m) Length (m) Inner radius (cm) Outer radius (cm) Distance from IP* (m) Beam separation** (cm) Notes Downstream electron side Downstream electron quad 1SC Downstream electron quad 2SC Downstream electron quad 3SC Electron spectrometer dipole 1warm1.2N/A Electron spectrometer dipole 2warm1.2N/A Merge dipoles 1 & 2? Upstream electron side Upstream electron quad 1permanent Upstream electron quad 2permanent Upstream electron quad 3SC Upstream electron quad 4SC Upstream electron quad 5SC * The distance is from the IP to the magnet side facing the IP ** The electron and ion beam separation is at the magnet side facing the IP Limited on ion beam side by beam separation

V.S. Morozov 11/02/2012 Acceptance of Downstream Electron Final Focus 5 GeV/c e -, uniform spreads: -0.5/0 in  p/p and  25 mrad in horizontal/vertical angle Apertures: Quads = 6, 6, 3 T / (  B y /  11 GeV/c), Dipoles =  20  20 cm ion beam 

V.S. Morozov 11/02/2012 Acceptance of Downstream Electron Final Focus Uniform e - distribution horizontally & vertically within  25 mrad around 5 GeV/c beam Apertures: Quads = 6, 6, 3 T / (  B y /  11 GeV/c), Dipoles =  20  20 cm  p/p = -0.5  p/p =  p/p = -0.1  p/p = 0 ion beam  ion beam 

V.S. Morozov 11/02/2012 Forward Electron Momentum & Angle Resolution Electrons with  p/p spread launched at different angles to nominal 5 GeV/c trajectory |  p/p| >  x,y = 0 ion beam 

V.S. Morozov 11/02/2012 Forward Electron Momentum & Angle Resolution Electrons with different  p/p launched with  x spread around nominal 5 GeV/c trajectory |  x | >  p/p = 0 ion beam 

V.S. Morozov 11/02/2012 Detector Region Model

V.S. Morozov 11/02/2012 Downstream Electron / Upstream Ion Side L = 40 cm, IR = 9.2 cm, 64.9 T/m max, 6 T max L = 60 cm, IR = 14.4 cm, 41.6 T/m max, 6 T max L = 30 cm, IR = 19.7 cm, 7.6 T/m max, 1.5 T max L = 1.2 m, IR = 3 cm, T/m max, 3.7 T max L = 1.5 m, IR = 4 cm, T/m max, 4.5 T max L = 0.5 m, IR = 4 cm, T/m max, 4.7 T max 9.8 cm 6.6 cm 9.6 cm 10 x 5.3 cm 10 x 6.8 cm

V.S. Morozov 11/02/2012 Electron Detector Region Optics Electron beam

V.S. Morozov 11/02/2012 Ion Detector Region Optics Ion beam

V.S. Morozov 11/02/2012 Ion Magnet Parameters 50 mrad beam crossing angle NameTypeMax B (T) Max  B y /  x (T/m) Length (m) Inner radius (cm) Outer radius (cm) Distance from IP* (m) Beam separation** (cm) Notes Detector solenoidSC4N/A5250 Downstream ion side Ion spectrometer dipole 1SC2N/A120525~60 mrad field rotation Septum? Downstream ion quad 1SC h/v orbit corrector? Downstream ion quad 2SC h/v orbit corrector? Downstream ion quad 3SC h/v orbit corrector? Ion spectrometer dipole 2SC5N/A rectangular or sector? Upstream ion side Upstream ion quad 1SC h/v orbit corrector? Upstream ion quad 2SC x arc FODO dipole? Upstream ion quad 3SC arc FODO dipole? * The distance is from the IP to the magnet side facing the IP ** The electron and ion beam separation is at the magnet side facing the IP Limited on e beam side by beam separation

V.S. Morozov 11/02/2012 Electron Magnet Parameters 50 mrad beam crossing angle NameTypeMax B (T) Max  B y /  x (T/m) Length (m) Inner radius (cm) Outer radius (cm) Distance from IP* (m) Beam separation** (cm) Notes Downstream electron side Downstream electron quad 1SC Downstream electron quad 2SC Downstream electron quad 3SC Electron spectrometer dipole 1warm1.2N/A Electron spectrometer dipole 2warm1.2N/A Merge dipoles 1 & 2? Upstream electron side Upstream electron quad 1permanent Upstream electron quad 2permanent Upstream electron quad 3SC Upstream electron quad 4SC Upstream electron quad 5SC * The distance is from the IP to the magnet side facing the IP ** The electron and ion beam separation is at the magnet side facing the IP Limited on ion beam side by beam separation

V.S. Morozov 11/02/2012 High-Luminosity Detector Region Optics Smaller detector space Assume the same chromatic contribution as the full-acceptance IR  * x/y reduced to 7.5/1.5 cm  ~33% luminosity increase  Theoretical luminosity increase naively (4.4+7)/( )  1.43 but since focal distance is longer than the detector space (5.4+8)/( )  m 4.5 m IP x

V.S. Morozov 11/02/2012 Outlook and R&D