Tracking and Probing Single, Diffusing Molecules in Droplets Mark Arsenault, Peker Milas, Ben Gamari, Richard Buckman, Lori Goldner Biophysics Group MiniSymposium 19 May 2010
Droplet-Based Assays ~1 m diameter aqueous droplet fluorophore Target molecule Oil Phase
Outline Motivation Microfluidics Experimental Setup Droplet Tracking Preliminary Results
Single-Molecule Assays (surface)
Single-Molecule 3-Bead Assay (surface) Quadrant Photodiode ~ 5 pN “pretension” on ~1 m diameter beads
Single-Molecule 3-Bead Assay (surface) Quadrant Photodiode
Single-Molecule 3-Bead Assay (surface) Quadrant Photodiode ~ 5 pN motor force
Droplet-Based Assays Tightly focused IR laser
Droplet-Based Assays Tightly focused IR laser Tightly focused visible laser
Outline Motivation Microfluidics Experimental Setup Droplet Tracking Preliminary Results
Benefit of Miniaturization Faster Cheaper Better 50 years! ENIAC on a 7.44 by 5.29 sq. mm chip Historic Computer Images, ftp.arl.army.mil/ftp/historic-computers ENIAC-on-a-Chip, Miniaturization
A. W. Chow AIChE, inch
IR Force Oil Aqueous A Aqueous B IR Beam Detection Region Microfluidics
Flow-focusing device producing both a) 20 mm diameter and b) ~1 mm diameter aqueous droplets. a)b)
Outline Motivation Microfluidics Experimental Setup Droplet Tracking Preliminary Results
APD Flow cell Objective Condenser Dichroic Mirror Detectors Position Sensitive Detector Lens Pinhole IR (tracking) beam Excitation Beam Fluorescent Emission Laser confocal volume Back-Focal-Plane Tracking Fluorescent Excitation
Back-Focal-Plane Tracking APD Flow cell Objective Condenser Dichroic Mirror Detectors Position Sensitive Detector Lens Pinhole IR (tracking) beam Excitation Beam Fluorescent Emission Laser confocal volume Fluorescent Emission
Solution FRET Large Volume Ensemble Measurement
Solution FRET Large Volume Ensemble Measurement Small Volume Ensemble Measurement
Solution FRET Large Volume Ensemble Measurement Small Volume Ensemble Measurement Small Volume, Single- Molecule Measurement
Back-Focal-Plane Tracking APD Flow cell Objective Condenser Dichroic Mirror Detectors Position Sensitive Detector Lens Pinhole IR (tracking) beam Excitation Beam Fluorescent Emission Laser confocal volume IR Trapping
Back-Focal-Plane Tracking PID control of Mad City Labs piezoelectric nanostage. [We will move the stage (microfluidic device) so as to remain in the trap/confocal spot] APD Flow cell Objective Condenser Dichroic Mirror Detectors Position Sensitive Detector Lens Pinhole IR (tracking) beam Excitation Beam Fluorescent Emission Laser confocal volume IR Tracking
Outline Motivation Microfluidics Experimental Setup Droplet Tracking Preliminary Results
Back-Focal-Plane Tracking x y 1 um bead APD Flow cell Objective Condenser Dichroic Mirror Detectors Position Sensitive Detector Lens Pinhole IR (tracking) beam Excitation Beam Fluorescent Emission Laser confocal volume
Back-Focal-Plane Tracking y x VxVx APD Flow cell Objective Condenser Dichroic Mirror Detectors Position Sensitive Detector Lens Pinhole IR (tracking) beam Excitation Beam Fluorescent Emission Laser confocal volume
Back-Focal-Plane Tracking x y z APD Flow cell Objective Condenser Dichroic Mirror Detectors Position Sensitive Detector Lens Pinhole IR (tracking) beam Excitation Beam Fluorescent Emission Laser confocal volume
Outline Motivation Microfluidics Experimental Setup Droplet Tracking Preliminary Results
Surface-based FRET
Solution FRET
16-mer RNA duplex with Cy3 and Cy5 labeling + Trolox + Puglisi oxygen scavenging enzyme 5` 3` Cy3 G - C C - G U - A C - G A - U C - G U - A G - C U - A C - G A - U C - G U - A C - G G - C Cy5 3` 5`
Conclusions Solution FRET We are obtaining nice burst data from single, diffusing fluorescent RNA molecules Let’s do droplets! Droplet Tracking We need to calibrate much more quickly (i.e. 100 ms). Calibrating in oil will be that much easier, however, so once we make that jump, the oil should give us an added jump in performance.
Device Fabrication Silicon Spin negative photoresist: SU-8 Transparency mask Expose to UV light 100 um
Device Fabrication UV light exposed Develop – finished master! Pour PDMS
Device Fabrication Remove device 150 um thick Attach to glass + PDMS 100 um Punch plumbing
Tipstreaming Mechanism Microscale tipstreaming in a microfluidic flow focusing device, PHYSICS OF FLUIDS 18,
Capillary Number Relates viscous forces to capillary pressure Ca= C Ga/ where = oil viscosity G = elongation rate a = drop radius = surface tension Ca = C Q C a/ h Z (1/W or – 1/2W up ) h = channel depth V D ~ 1 cm/s V C ~ 5 cm/s Microscale tipstreaming in a microfluidic flow focusing device, PHYSICS OF FLUIDS 18,
Dimensionless Parameters Navier Stokes eqn. Reynold’s Number Weber Number Inertia is not important!
Droplet Regimes Geometry-controlled Thread-formation drippingjetting Microscale tipstreaming in a microfluidic flow focusing device, PHYSICS OF FLUIDS 18,