How Cells Harvest Energy Chapter 7. 2 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own.

Slides:



Advertisements
Similar presentations
Cellular respiration biology 1. Cellular respiration and fermentation are catabolic (energy yielding) pathways Redox reactions release energy when electrons.
Advertisements

How Cells Harvest Energy Chapter 7. 2 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own.
Objectives Contrast the roles of glycolysis and aerobic respiration in cellular respiration. Relate aerobic respiration to the structure of a mitochondrion.
How Cells Harvest Chemical Energy
Fig. 9.1 Respiration. Cellular Energy Harvest: an Overview Stages of Aerobic Cellular Respiration –Glycolysis –Oxidation of Pyruvate –Krebs Cycle –Electron.
1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint to accompany CONCEPTS IN BIOLOGY TWELFTH EDITION.
Ch 6 Cellular Respiration. Energy for life ECOSYSTEM Photosynthesis in chloroplasts Glucose Cellular respiration in mitochondria H2OH2O CO 2 O2O2  
CHAPTER 7 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
How Cells Harvest Energy
Chapter 7 Respiration. 2 Organisms can be classified based on how they obtain energy: –Autotrophs Able to produce their own organic molecules through.
Lesson 7: Harvesting of Energy “Cellular Respiration”
Chapter 7 Lecture Slides
Chapter 9 p Principles of Energy Harvest Cells require energy to perform many types of work By breaking down complex organic molecules into.
Cellular Respiration: Harvesting Chemical Energy
Cellular Respiration 7.3 Aerobic Respiration.
Energy Releasing Pathways ATP
Biochemical Pathways: Cellular Respiration
6-1 Chapter 6 Lecture Outline See PowerPoint Image Slides for all figures and tables pre-inserted into PowerPoint without notes.
6-1 Chapter 6 Lecture Outline See PowerPoint Image Slides for all figures and tables pre-inserted into PowerPoint without notes.
How Cells Harvest Energy Chapter 7. 2 MAIN IDEA All cells derive chemical energy form organic molecules and use it to convert that energy to ATP.
How Cells Harvest Chemical Energy
Cellular Respiration AP Biology Photosynthesis….then Photosynthesis captures the sun’s energy and converts it to glucose Cellular respiration is the.
 Pencil  Science Journal  If you need to take the quiz, see me.  hill.com/sites/ /student_view0/chapter25/ animation__how_the_krebs_cycle_works__quiz_2_.html.
1 Respiration Cellular respiration is a series of reactions that: -are oxidations – loss of electrons -are also dehydrogenations – lost electrons are accompanied.
Cellular Respiration. C6H12O6 + O2  CO2 + H2O + energy Glucose + oxygen carbon + water + ATP dioxide.
Essentials of the Living World How Cells Harvest Energy from Food
Cell Respiration Chapter 9. Slide 2 of 33 Why Respire?  Living cells require energy transfusions to perform most of their tasks  From external sources.
Electron transport chain Cellular respiration is a series of reactions that: -are oxidations – loss of electrons -are also dehydrogenations lost electrons.
How Cells Harvest Energy Chapter 6
December 5, 2012Caring Requisite: required; necessary Do Now: You will read a news release. In your journal you must write your opinion and provide solid.
Ch. 9 Cellular Respiration and Fermentation. Catabolic pathways yield energy by oxidizing organic fuels Cells break down glucose and other organic fuels.
How Cells Harvest Energy
1 How Cells Harvest Energy Chapter 9. 2 Outline Cellular Energy Harvest Cellular Respiration – Glycolysis – Oxidation of Pyruvate – Krebs Cycle – Electron.
1 Respiration Organisms can be classified based on how they obtain energy: Autotrophs –Able to produce their own organic molecules through photosynthesis.
Chapter 7: Cellular Pathways That Harvest Chemical Energy Cellular Pathways That Harvest Chemical Energy Obtaining Energy and Electrons from GlucoseObtaining.
Cellular Respiration: Harvesting Chemical Energy Chapter 9 Biology – Campbell Reece.
Pathways That Harvest Chemical Energy
Cellular Respiration LEOxidized and GEReduced H + + e - -Therefore H atoms are removed electrons are also removed. Copyright © The McGraw-Hill Companies,
Cellular Respiration: Harvesting Chemical Energy
How Cells Harvest Energy Chapter 7. Laws of Thermodynamics Most reactions require some energy to get started. activation energy: extra energy needed to.
Pp 69 – 73 & Define cell respiration Cell respiration is the controlled release of energy from organic compounds in cells to form ATP Glucose.
Cellular Respiration. What is Cellular Respiration? Cellular respiration is a catabolic pathway in which oxygen is consumed along with organic fuel. In.
Chapter 9: Cellular Respiration
Cellular Respiration.
Chapter 07 Cellular Respiration Biology II – Dual Enrollment.
The Behavior of Proteins: Enzymes, Mechanisms and Control Chapter 7.
Tricarboxcylic acid cycle Anaerobic, cell membrane or mitochondria Each pyruvate gives up its carbon as CO 2 –6 total Oxaloacetate is regenerated with.
Cellular Respiration Making ATP. Cellular Respiration Cell respiration is the controlled release of energy from organic compounds in cells to form ATP.
Pathways that Harvest and Store Chemical Energy
Chapter 7 Harvesting Energy. 7.1 Overview of Respiration Autotrophs-photosynthesize-use sunlight and convert it to chemical energy Ex: plants, algae and.
Ch. 6: Cellular Respiration Harvesting Chemical Energy.
Cellular Respiration C6H12O6 + 6 O2 6 CO2 + 6H2O + 38 ATP.
How Cells Harvest Energy from Food
Cellular Respiration & Fermentation
Cellular Respiration Chapter 8.
Cellular Respiration C6H12O6 + 6 O2 6 CO2 + 6H2O + 38 ATP.
Cellular Respiration Chapter 7.
Respiration! Chapter 9~ Cellular Respiration: Harvesting Chemical Energy Great Animation (show at end too)
Cellular Respiration
Cellular Respiration Harvesting Chemical Energy
Cellular Respiration & Fermentation
How Cells Harvest Energy
How Cells Harvest Chemical Energy
Chapter 7 Cellular Respiration Notes
Cellular Respiration.
Chapter 9: Respiration.
Chapter 7 Cellular Respiration
Cellular Respiration C6H12O6 + 6 O2 6 CO2 + 6H2O + 38 ATP.
Chapter 6 Lecture Outline See PowerPoint Image Slides
Presentation transcript:

How Cells Harvest Energy Chapter 7

2 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds produced by other organisms All organisms use cellular respiration to extract energy from organic molecules.

3 Respiration Cellular respiration is a series of reactions that: -are oxidations – loss of electrons -are also dehydrogenations – lost electrons are accompanied by hydrogen Therefore, what is actually lost is a hydrogen atom (1 electron, 1 proton).

4 Respiration During redox reactions, electrons carry energy from one molecule to another. NAD + is an electron carrier. -NAD accepts 2 electrons and 1 proton to become NADH -the reaction is reversible

5

6

7 Respiration During respiration, electrons are shuttled through electron carriers to a final electron acceptor. aerobic respiration: final electron receptor is oxygen (O 2 ) anaerobic respiration: final electron acceptor is an inorganic molecule (not O 2 ) fermentation: final electron acceptor is an organic molecule

8

9 Respiration Aerobic respiration: C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O  G = -686kcal/mol of glucose  G can be even higher than this in a cell This large amount of energy must be released in small steps rather than all at once.

10 Respiration The goal of respiration is to produce ATP. -energy is released from oxidation reaction in the form of electrons -electrons are shuttled by electron carriers (e.g. NAD + ) to an electron transport chain -electron energy is converted to ATP at the electron transport chain

11 Oxidation of Glucose Cells are able to make ATP via: 1. substrate-level phosphorylation – transferring a phosphate directly to ADP from another molecule 2. oxidative phosphorylation – use of ATP synthase and energy derived from a proton (H + ) gradient to make ATP

12

13 Oxidation of Glucose The complete oxidation of glucose proceeds in stages: 1. glycolysis 2. pyruvate oxidation 3. Krebs cycle 4. electron transport chain & chemiosmosis

14

15 Glycolysis Glycolysis converts glucose to pyruvate. -a 10-step biochemical pathway -occurs in the cytoplasm -2 molecules of pyruvate are formed -net production of 2 ATP molecules by substrate-level phosphorylation -2 NADH produced by the reduction of NAD +

16

17 Glycolysis For glycolysis to continue, NADH must be recycled to NAD + by either: 1. aerobic respiration – occurs when oxygen is available as the final electron acceptor 2. fermentation – occurs when oxygen is not available; an organic molecule is the final electron acceptor

18 Glycolysis The fate of pyruvate depends on oxygen availability. When oxygen is present, pyruvate is oxidized to acetyl-CoA which enters the Krebs cycle Without oxygen, pyruvate is reduced in order to oxidize NADH back to NAD +

19

20 Pyruvate Oxidation In the presence of oxygen, pyruvate is oxidized. -occurs in the mitochondria in eukaryotes -occurs at the plasma membrane in prokaryotes -in mitochondria, a multienzyme complex called pyruvate dehydrogenase catalyzes the reaction

21 Pyruvate Oxidation The products of pyruvate oxidation include: -1 CO 2 -1 NADH -1 acetyl-CoA which consists of 2 carbons from pyruvate attached to coenzyme A Acetyl-CoA proceeds to the Krebs cycle.

22

23 Krebs Cycle The Krebs cycle oxidizes the acetyl group from pyruvate. -occurs in the matrix of the mitochondria -biochemical pathway of 9 steps -first step: acetyl group + oxaloacetate citrate (2 carbons) (4 carbons) (6 carbons)

24 Krebs Cycle The remaining steps of the Krebs cycle: -release 2 molecules of CO 2 -reduce 3 NAD + to 3 NADH -reduce 1 FAD (electron carrier) to FADH 2 -produce 1 ATP -regenerate oxaloacetate

25

26 Krebs Cycle After glycolysis, pyruvate oxidation, and the Krebs cycle, glucose has been oxidized to: - 6 CO ATP - 10 NADH - 2 FADH 2 These electron carriers proceed to the electron transport chain.

27 Electron Transport Chain The electron transport chain (ETC) is a series of membrane-bound electron carriers. -embedded in the mitochondrial inner membrane -electrons from NADH and FADH 2 are transferred to complexes of the ETC -each complex transfers the electrons to the next complex in the chain

28 Electron Transport Chain As the electrons are transferred, some electron energy is lost with each transfer. This energy is used to pump protons (H + ) across the membrane from the matrix to the inner membrane space. A proton gradient is established.

29

30 Electron Transport Chain The higher negative charge in the matrix attracts the protons (H + ) back from the intermembrane space to the matrix. The accumulation of protons in the intermembrane space drives protons into the matrix via diffusion.

31 Electron Transport Chain Most protons move back to the matrix through ATP synthase. ATP synthase is a membrane-bound enzyme that uses the energy of the proton gradient to synthesize ATP from ADP + P i.

32

33

34 Energy Yield of Respiration theoretical energy yields - 38 ATP per glucose for bacteria - 36 ATP per glucose for eukaryotes actual energy yield - 30 ATP per glucose for eukaryotes - reduced yield is due to “leaky” inner membrane and use of the proton gradient for purposes other than ATP synthesis

35

36 Regulation of Respiration Regulation of aerobic respiration is by feedback inhibition. -a step within glycolysis is allosterically inhibited by ATP and by citrate -high levels of NADH inhibit pyruvate dehydrogenase -high levels of ATP inhibit citrate synthetase

37

38 Oxidation Without O 2 Respiration occurs without O 2 via either: 1. anaerobic respiration -use of inorganic molecules (other than O 2 ) as final electron acceptor 2. fermentation -use of organic molecules as final electron acceptor

39 Oxidation Without O 2 Anaerobic respiration by methanogens -methanogens use CO 2 -CO 2 is reduced to CH 4 (methane) Anaerobic respiration by sulfur bacteria -inorganic sulphate (SO 4 ) is reduced to hydrogen sulfide (H 2 S)

40 Oxidation Without O 2 Fermentation reduces organic molecules in order to regenerate NAD + 1. ethanol fermentation occurs in yeast -CO 2, ethanol, and NAD + are produced 2. lactic acid fermentation -occurs in animal cells (especially muscles) -electrons are transferred from NADH to pyruvate to produce lactic acid

41 Glucose 2 Pyruvate Alcohol Fermentation in Yeast GLYCOLYSISGLYCOLYSIS Glucose 2 Pyruvate Lactic Acid Fermentation in Muscle Cells H C C O–O– C C CH 3 O–O– CO 2 2 Ethanol 2 Acetaldehyde 2 NAD + C H CH 3 2 NADH 2 ADP 2 Lactate CH 3 H O–O– C 2 NAD + 2 NADH Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. O O O CH 3 2 ATP 2 ADP O COH HC O O GLYCOLYSISGLYCOLYSIS

42 Catabolism of Protein & Fat Catabolism of proteins: -amino acids undergo deamination to remove the amino group -remainder of the amino acid is converted to a molecule that enters glycolysis or the Krebs cycle -for example: alanine is converted to pyruvate aspartate is converted to oxaloacetate

43 Catabolism of Protein & Fat Catabolism of fats: -fats are broken down to fatty acids and glycerol -fatty acids are converted to acetyl groups by  -oxidation The respiration of a 6-carbon fatty acid yields 20% more energy than glucose.

44

45

46 Evolution of Metabolism A hypothetical timeline for the evolution of metabolism: 1. ability to store chemical energy in ATP 2. evolution of glycolysis 3. anaerobic photosynthesis (using H 2 S) 4. use of H 2 O in photosynthesis (not H 2 S) 5. evolution of nitrogen fixation 6. aerobic respiration evolved most recently

47 This project is funded by a grant awarded under the President’s Community Based Job Training Grant as implemented by the U.S. Department of Labor’s Employment and Training Administration (CB ). NCC is an equal opportunity employer and does not discriminate on the following basis: against any individual in the United States, on the basis of race, color, religion, sex, national origin, age disability, political affiliation or belief; and against any beneficiary of programs financially assisted under Title I of the Workforce Investment Act of 1998 (WIA), on the basis of the beneficiary’s citizenship/status as a lawfully admitted immigrant authorized to work in the United States, or his or her participation in any WIA Title I-financially assisted program or activity.

48 Disclaimer This workforce solution was funded by a grant awarded under the President’s Community-Based Job Training Grants as implemented by the U.S. Department of Labor’s Employment and Training Administration. The solution was created by the grantee and does not necessarily reflect the official position of the U.S. Department of Labor. The Department of Labor makes no guarantees, warranties, or assurances of any kind, express or implied, with respect to such information, including any information on linked sites and including, but not limited to, accuracy of the information or its completeness, timeliness, usefulness, adequacy, continued availability, or ownership. This solution is copyrighted by the institution that created it. Internal use by an organization and/or personal use by an individual for non-commercial purposes is permissible. All other uses require the prior authorization of the copyright owner.