Aurore Savoy-Navarro 1), Albert Comerma 2), E. Deumens 3), Thanh Hung Pham 1), Rachid Sefri 1) 1) LPNHE-Université Pierre et Marie Curie/IN2P3-CNRS, Fr.

Slides:



Advertisements
Similar presentations
R&D for ECAL VFE technology prototype -Gerard Bohner -Jacques Lecoq -Samuel Manen LPC Clermond-Ferrand, Fr -Christophe de La Taille -Julien Fleury -Gisèle.
Advertisements

SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
Large Area, High Speed Photo-detectors Readout Jean-Francois Genat + On behalf and with the help of Herve Grabas +, Samuel Meehan +, Eric Oberla +, Fukun.
1 H-Cal front-end ASIC Status LAL Orsay J. Fleury, C. de la Taille, G. Martin, L. Raux.
SiLC Front-End Electronics LPNHE Paris March 15 th 2004.
Multichannel Analyzers A multichannel pulse-height analyzer (MCA) consists of an ADC, a histogramming memory, and a visual display of the histogram recorded.
1 SciFi electronics meeting – CERN– June 20 th 2011 Some ideas about a FE for a SciFi tracker based on SiPM A. Comerma, D. Gascón Universitat de Barcelona.
Calorimeter upgrade meeting – CERN – October 5 th 2010 Analog FE ASIC: first prototype Upgrade of the front end electronics of the LHCb calorimeter E.
Development of a 20 GS/s Sampling Chip in 130nm CMOS Technology Jean-Francois Genat On behalf of Mircea Bogdan 1, Henry J. Frisch 1, Herve Grabas 3, Mary.
TOF Electronics Qi An Fast Electronics Lab, USTC Sept. 16~17, 2002.
Preliminary Design of Calorimeter Electronics Shudi Gu June 2002.
Oct, 2000CMS Tracker Electronics1 APV25s1 STATUS Testing started beginning September 1 wafer cut, others left for probing 10 chips mounted on test boards.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
L.Royer– TWEPP – 22 Sept Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand Signal processing for High Granularity Calorimeter: Amplification,
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
PMF: front end board for the ATLAS Luminometer ALFA TWEPP 2008 – 19 th September 2008 Parallel Session B6 – Programmable logic, boards, crates and systems.
S.Manen– IEEE Dresden – Oct A custom 12-bit cyclic ADC for the electromagnetic calorimeter of the International Linear Collider Samuel.
The AFTER electronics from a user’s point of view D. Attié, P. Colas Mamma meeting,CERN Feb T2K electronics.
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
Front-end Electronics for Silicon Trackers readout Deep Sub-Micron Technology The case of Silicon strips at the ILC Jean-Francois Genat and S. Fougeron,
Vendredi 18 décembre 2015 Status report on SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin- Chassard, Christophe.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
EUDET ANNUAL MEETING OCT 6th-8th 2008, NIKHEF A 130nm CMOS Digitizer Chip for Silicon Strips readout at the ILC on behalf of W. Da Silva 1, J. David 1,
1 JRA2-SITRA status report Z. Doležal, A. Savoy-Navarro for JRA2-SITRA partners (LPNHE Paris, Ch.U. Prague, Helsinki, Santander) and associates (CNM Barcelona,
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
L.Royer – Calice Manchester – Sept A 12-bit cyclic ADC dedicated to the VFE electronics of Si-W Ecal Laurent ROYER, Samuel MANEN LPC Clermont-Ferrand.
ASIC Activities for the PANDA GSI Peter Wieczorek.
and the EUDET I3-FP6 European Project
LC Power Distribution & Pulsing Workshop, May 2011 Super-ALTRO Demonstrator Test Results LC Power Distribution & Pulsing Workshop, May nd November.
Click to edit Master subtitle style Presented By Mythreyi Nethi HINP16C.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration
ASIC Development for Vertex Detector ’07 6/14 Y. Takubo (Tohoku university)
Silicon Tracking for CLIC experiments Aurore Savoy-Navarro, LPNHE Université Pierre et Marie Curie/CNRS-IN2P3 CLIC08 WORKSHOP, October 2008, CERN.
14 jan 2010 CALICE/EUDET FEE status C. de LA TAILLE.
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
1 Second generation Front-end chip for H-Cal SiPM readout : SPIROC Réunion EUDET France – LAL – jeudi 5 avril 2007 M. Bouchel, F. Dulucq, J. Fleury, C.
Oscar Alonso – Future Linear Colliders Spanish Network 2015 – XII Meeting - Barcelona, January 2015 O. Alonso, J. Canals, M. López, A. Vilà, A. Herms.
June 13rd, 2008 HARDROC2. June 13rd, 2008 European DHCAL meeting, NSM 2 HaRDROC1 architecture Variable gain (6bits) current preamps (50ohm input) One.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
1 Progress report on the LPSC-Grenoble contribution in micro- electronics (ADC + DAC) J-Y. Hostachy, J. Bouvier, D. Dzahini, L. Galin-Martel, E. Lagorio,
Deep submicron readout chip development on behalf of D. Fougeron, 1 R. Hermel 1, H. Lebbolo 2, R. Sefri, 2 1 LAPP Annecy, 2 LPNHE Paris SiD phone meeting.
SKIROC status Calice meeting – Kobe – 10/05/2007.
Silicon Tracker Data Acquisition and Electronics for the Linear Collider Jean-Francois Genat LPNHE Universite Pierre et Marie Curie CNRS/IN2P3 On behalf.
A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC on behalf of J. David 2, M. Dhellot 2, D. Fougeron, 1 R. Hermel 1, J-F. Huppert.
STATUS OF SPIROC measurement
M. Manghisoni, L. Ratti Università degli Studi di Pavia INFN Pavia
A 12-bit low-power ADC for SKIROC
KLOE II Inner Tracker FEE
A General Purpose Charge Readout Chip for TPC Applications
ECAL front-end electronic status
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
R&D activity dedicated to the VFE of the Si-W Ecal
The Silicon Drift Detector of the ALICE Experiment
Jean-Francois Genat LPNHE Universite Pierre et Marie Curie CNRS/IN2P3
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
Electronics for the E-CAL physics prototype
EUDET – LPC- Clermont VFE Electronics
Status of n-XYTER read-out chain at GSI
STATUS OF SKIROC and ECAL FE PCB
ECAL Electronics Status
SKIROC status Calice meeting – Kobe – 10/05/2007.
HARDROC STATUS 17 mar 2008.
Stéphane Callier, Dominique Cuisy, Julien Fleury
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
Signal processing for High Granularity Calorimeter
Presentation transcript:

Aurore Savoy-Navarro 1), Albert Comerma 2), E. Deumens 3), Thanh Hung Pham 1), Rachid Sefri 1) 1) LPNHE-Université Pierre et Marie Curie/IN2P3-CNRS, Fr 2) Universitat de Barcelona. Dept d’Estructura i Constituents de la Materia, Sp 3) IMEC, Leuwen, Be

Preamp and Shaper: Gain = 29mV/MIP Dynamic range = 20MIPs (1%) 30 MIPs (5%) Peaking time = ms / 0.5-3ms expected Power dissipation 600 μWatt/ch Shaper output Peaking time: 1.5 μs Preamplifier output

Digitized analogue pipeline output test pulse (left) and Laser response of detector + 130nm chip (right) Digital oscilloscopy

Test beam at SPS CERN, Oct 2007 combined with EUDET MAPS telescope Also extensive studies with Sr90 source at Lab test bench The beam test includes a collaborative effort with several SiLC institutions (CU Prague, IFCA, IEKP, HEPHY, LPNHE, OSU, Torino U./INFN, CERN and DESY collaboration as well)

After very encouraging results obtained with the first pre-prototype Go to the full version: SiTR_ /14/20169 FE Readout Electronics for Strip tracking, A. Savoy-Navarro

88 channels (1 test channel)‏: Preamplifier, shaper, sparsifier, analogue pipeline (8x8 cells), 12 bits ADC 2D memory structure: 8x8/channels Fully digital control: - Bias voltage(10 bits) and current (8 bits)‏ - Power cycling (can be switched on and off)‏ - Shaping time programmable - Sampling frequency programmable - Internal calibration (fully programmable 10 bits DAC) - Sparsifier's threshold programmable per channel - Event tag and time tag generation => High fault tolerance => High flexibility, robustness Trigger modes: Internal (Sparsification integrated)‏ External (LVTTL) for beam test

Submitted June 24 th ’08, received September 12 the naked chips (60), Size: 5mmx10mm 88 channels (105um pitch)‏ 105umx3.5mm/channel Analog: 9.5mmx3.5mm Digital : 9.5mmx700um 10mm 5mm Photograph of the new chip SiTR_130-88

BONDING DIAGRAM FOR CQFP208 PACKAGE Package 208 pins - 50 analog input - 21 analog test out - 33 digital pin (22 test pins)‏ supply pins For a a detailed test of chip functionality & performances 20 packaged chips delivered October 15th Test is “easy” because the chip is “fully programmable”

Summary of simulation studies Main present results from the simualtion studies Preamplifier: Charge gain: 27mV/MIP ± 5% Linearity: 17 MIP (1%) to 29 MIP (5%) Shaper: 30mV/MIP ± 5% Shaping time: 0.5 to 1.5 μs Linearity: idem premaplifier Noise: e-/pF (1.5 μs) Pipeline (8x8) Sampling rate (2) Linearity: idem premaplifier ADC conversion time: about 85 μs (48 MHhz clock) Calibration: Integrated capacitor: 100 fF Calibration pulse amplitude: 10 bits DAC (same as bias generator) Overall power dissipation per channel: about 1mWatt Total, not including power cycling

Pipeline simulation Pipeline Input Pipeline Output Write command Read command Writing phase Reading phase Summary of simulation studies (con’td)

Mixed Mode simulation using AMS Designer - Cadence Analogue Digital Simulation result Yellow : Analogue signal Green : Digital signal Among the big challenges in designing this chip: to find a way to perform the mixed mode simulation

SiTR_130-88: System overview

Sampling and conversion time: All the 88 channels of the chip are converted in parallel. There are 8x8 samples to be converted per channel; the conversion time per channel Is approximately 85 μ s thus a total of 5.44 ms is needed for the conversion Simulated shaper pulse Reconstruction of the pulse height: 8 samples including pedestal

88 ch 12bits Wilkinson ADC 80 μs conv. time (For more information see presentation at the DAQ session) The acquisition control block is constructed around a finite state machine (fsm), with 4 states

Go to basic blocks of 256 channels and build modules of 512 channels or 1024 out of them (multiplexing factor is still under investigation) Thinning of the chip Next version in full wafer process (gain in space) Include latest results from the tests on the present chip Try the 90 nm CMOS technology For the longer term it is intended to prepare a fast version CLIC-like Pursue the direct connection chip onto the strip detector (bump bonding now, and starting to investigate 3D vertical interconnect as part of the global effort) NOW WE ARE WORKING ON TESTING THIS CHIP!!