Aleksandra Kelić Gesellschaft für Schwerionenforschung (GSI) Darmstadt, Germany Experimental approaches to spallation reactions.

Slides:



Advertisements
Similar presentations
New technique to determine beta half-lives in complex background conditions T. Kurtukian-Nieto 1, J. Benlliure 1, K.-H. Schmidt 2, L. Audouin 3, F. Becker.
Advertisements

The fission of a heavy fissile nucleus ( A, Z ) is the splitting of this nucleus into 2 fragments, called primary fragments A’ 1 and A’ 2. They are excited.
Contributions to Nuclear Data by Radiochemistry Division, BARC
Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294 Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires.
BEAM INTENSITIES WITH EURISOL M. Valentina Ricciardi GSI, Darmstadt, Germany.
Excitation of nucleon resonances in charge-exchange reactions J. Benlliure Universidad de Santiago de Compostela Spain.
Simulation of a Ring Imaging Cerenkov detector to identify relativistic heavy ions. M.Fernández-Ordóñez, J.Benlliure, E.Casarejos, J.Pereira Universidad.
FUSTIPEN - Caen – 13/10/2014 L. Tassan-Got Fission fragment angular distribution and isotopic distributions Fission fragment angular distributions and.
C. Böckstiegel, S. Steinhäuser, H.-G. Clerc, A. Grewe, A. Heinz, M. de Jong, J. Müller, B. Voss Institut für Kernphysik, TU Darmstadt A. R. Junghans, A.
Proton and Two-Proton Decay of a High-Spin Isomer in 94 Ag Ernst ROECKL GSI Darmstadt and Warsaw University.
Applications of neutron spectrometry Neutron sources: 1) Reactors 2) Usage of reactions 3) Spallation sources Neutron show: 1) Where atoms are (structure)
Microscopic-macroscopic approach to the nuclear fission process
Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294 Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires.
NUSTAR Nuclear Structure, Astrophysics, Reactions NUSTAR is the biggest collaboration in FAIR The collaboration unites 450 scientists from 98 institutions.
* Spokesperson: Isao Tanihata - Beijing and Osaka Co-spokesperson: Hans Geissel – GSI Chair of Collaboration board: Juha Äystö – Helsinki Co-chair: Christoph.
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Transmutation of Spent Nuclear Fuel utilizing Spallation Reactions John Freiderich NCSS 07/27/2006.
Investigation of GeV proton-induced spallation reactions
Neutron transfer reactions at large internuclear distances studied with the PRISMA spectrometer and the AGATA demonstrator.
Nuclear Reactions - II A. Nucleon-Nucleus Reactions A.1 Spallation
M. V. Ricciardi a, T. Enqvist a,[1], J. Pereira b, J. Benlliure b, M. Bernas c, E. Casarejos b, V. Henzl a, A. Kelić a, J. Taieb c,[2], K.-H. Schmidt a.
Aleksandra Kelić for the CHARMS collaboration§ GSI Darmstadt, Germany
Recent improvements in the GSI fission model
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
Spectator response to participants blast - experimental evidence and possible implications New tool for investigating the momentum- dependent properties.
Complex nuclear-structure phenomena revealed from the nuclide production in fragmentation reactions M. V. Ricciardi 1, A.V. Ignatyuk 2, A. Kelić 1, P.
Results of the de-excitation code ABLA07 GSI Darmstadt, Germany Aleksandra Kelić M. Valentina Ricciardi Karl-Heinz Schmidt.
Lydie Giot* for the CHARMS collaboration Studies of spallation reactions at GSI * EURATOM Fellowship (FP6)
M. Valentina Ricciardi GSI Darmstadt, Germany New London, June 15-20, 2008 Fragmentation Reactions: Recent Achievements and Future Perspective.
High-resolution experiments on projectile fragments – A new approach to the properties of nuclear matter A. Kelić 1, J. Benlliure 2, T. Enqvist 1, V. Henzl.
Progress in  half lives of nuclei approaching the r-process path at N=126 José Benlliure Universidad de Santiago de Compostela, Spain INPC 2007.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
Spectator response to participants blast - experimental evidence and possible implications New tool for investigating the momentum- dependent properties.
High-resolution experiments on nuclear fragmentation at the FRS at GSI M. Valentina Ricciardi GSI Darmstadt, Germany.
Production and beta decay lifetimes of heavy neutron-rich nuclei approaching the r-process path Teresa Kurtukian-Nieto Universidad de Santiago de Compostela.
Projectile Fragmentation at the Fragment Separator
Andreas Heinz Wright Nuclear Structure Laboratory, Yale University for the CHARMS Collaboration Symposium on Nuclear Structure and Reactions in the Era.
D. Henzlova a, M. V. Ricciardi a, J. Benlliure b, A. S. Botvina a, T. Enqvist a, A. Keli ć a, P. Napolitani a, J. Pereira b, K.-H. Schmidt a a GSI-Darmstadt,
K.-H. Schmidt for the CHARMS collaboration Gesellschaft für Schwerionenforschung (GSI) Darmstadt, Germany Spallation Reactions - Physics and Applications.
High-resolution experiments on nuclear reactions and their implications for astrophysics and nuclear technology Karl-Heinz Schmidt for CHARMS.
Beam intensities with EURISOL Aleksandra Kelić, GSI-Darmstadt on behalf of the EURISOL DS Task 11 Participants and contributors: ISOLDE-CERN, CEA/Saclay,
Sub-task 4: Spallation and fragmentation reactions M. Valentina Ricciardi (GSI) in place of José Benlliure (USC) Sub-task leader: Universidad de Santiago.
Aleksandra Keli ć for CHARMS Basic Research at GSI for the Transmutation of Nuclear Waste * * Work performed in the frame of the.
EVEN-ODD EFFECT IN THE YIELDS OF NUCLEAR-REACTION PRODUCTS
The University of Santiago de Compostela in numbers founded in 1495 one million square metres (82 buildings) 63 official degrees + doctoral programmes.
SECONDARY-BEAM PRODUCTION: PROTONS VERSUS HEAVY IONS A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany  Present knowledge on.
The de-excitation code ABLA07 Aleksandra Keli ć, Maria Valentina Ricciardi and Karl-Heinz Schmidt GSI Darmstadt, Germany.
A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany and CHARMS Measurements and simulations of projectile and fission fragments.
Momentum distributions of projectile residues: a new tool to investigate fundamental properties of nuclear matter M.V. Ricciardi, L. Audouin, J. Benlliure,
Observation of new neutron-deficient multinucleon transfer reactions
The isospin-thermometer method to determine the freeze-out temperature in fragmentation reactions D. Henzlova a, M. V. Ricciardi a, J. Benlliure b, A.
EVIDENCE FOR TRANSIENT EFFECTS IN FISSION AND IMPORTANCE FOR NUCLIDE PRODUCTION B. Jurado 1,2, K.-H. Schmidt 1, A. Kelić 1, C. Schmitt 1, J. Benlliure.
Spectator response to the participant blast in the reaction 197 Au+ 197 Au at 1 A GeV – results of the first dedicated experiment V. Henzl for CHARMS collaboration.
In-medium properties of nuclear fragments at the liquid-gas phase coexistence International Nuclear Physics Conference INPC2007 Tokyo, Japan, June 3-8,
Task 11.4: Spallation and fragmentation reactions David Pérez Loureiro Universidad de Santiago de Compostela, Spain Eurisol DS, Task 11 meeting,Helsinki.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Dynamical effects in fission reactions investigated at high excitation energy José Benlliure Universidad of Santiago de Compostela Spain.
PANIC’08 Eilat, November 13th, 2008 Teresa Kurtukian Nieto CEN Bordeaux-Gradignan Supernova remnant N49 Photo Credit: Hubble Heritage Team (STScI / AURA),
Monte Carlo methods in spallation experiments Defense of the phD thesis Mitja Majerle “Phasotron” and “Energy Plus Transmutation” setups (schematic drawings)
SMI-06 Workshop, Groningen,
Yuliya Aksyutina for the LAND-R3B collaboration Motivation
Nuclear excitations in nucleon removal processes
Overview of the fragmentation mechanism
BEAM INTENSITIES WITH EURISOL
Idea BUU calculations : 124Sn +124Sn Tlab= 800 MeV/u b = 5 fm
Intermediate-mass-fragment Production in Spallation Reactions
Daniela Henzlova for CHARMS collaboration GSI-Darmstadt, Germany
Cross-Section Measurement of Very Light Fission Fragments Produced in Spallation Reactions of 238U at 1 A GeV M. V. Ricciardi1, K. -H. Schmidt1, F. Rejmund1,
Microscopic-macroscopic approach to the nuclear fission process
Production Cross-Sections of Radionuclides in Proton- and Heavy Ion-Induced Reactions Strahinja Lukić.
Presentation transcript:

Aleksandra Kelić Gesellschaft für Schwerionenforschung (GSI) Darmstadt, Germany Experimental approaches to spallation reactions

Outline - Introduction Why studying spallation reactions Experimental challenges - Experimental approaches Direct kinematics Inverse kinematics For neutrons and light charged particles see e.g. : Herbach et al, Nucl. Instr. Meth. A 503 (2003) 315; Borne et al, Nucl. Instr. Meth. A 385 (1997) 339; Trebukhovsky et al, Phys. Atom. Nucl. 68 (2005) 3 - Next generation experiments - Conclusions

Definition Wikipedia ( 'In nuclear physics, it is the process in which a heavy nucleus emits a large number of nucleons as a result of being hit by a high-energy proton, thus greatly reducing its atomic weight' The concept of nuclear spallation was first coined by Glenn T. Seaborg: 'In order to distinguish these reactions from the ordinary nuclear reactions in which only one or two particles are ejected, in 1947 I coined the term “spallation” reactions. This term has since become standard in the field'. First observations: Shopper et al, Naturw. 25 (1937) 557 – interaction of cosmic rays in a track detector Seaborg, PhD thesis inelastic scattering of neutrons

Interest in spallation reactions Basic research See talks by: K.-H. Schmidt, P. Napolitani, A. Botvina Applications - Astrophysics (Reedy et al., J. Geophys. Res. 77 (1972) 537) - Transmutation of nuclear waste (Bowmann et al, Nucl. Instr. Meth. A320 (1992) 326; Rubbia et al, Report CERN/AT/95-44/(ET), 1995) - Space technologies (Buchner et al, IEEE Trans. Nucl. Sci. 47 (2000) 705Tang et al, Mat. Res. Soc. Bull. 28 (2003)) - Biology and medicine (Wambersie et al, Radiat. Prot. Dosim 31 (1990) 421; Bartlett et al, Radiat. Res. Cong. Proc. 2 (2000) 719) - Radioactive-beam production (EURISOL project) - Spallation-neutron sources (SNS, ESS) Facilities SATURNE (F), IPNO (F), COSY (D), GSI (D), PSI (CH), ITEP (RU), JINR (RU), LANL (USA), BEVATRON (USA), KEK (J)

Experimental challenge

Low-energy reactions (~ MeV) Proton / neutron Target Compound nucleus Decay High-energy reactions (~ GeV) Proton / neutron Target Ensemble of compound nuclei Decays

Experimental challenge Data measured at GSI* * Ricciardi et al, Phys. Rev. C 73 (2006) ; Bernas et al., Nucl. Phys. A 765 (2006) 197; Armbruster et al., Phys. Rev. Lett. 93 (2004) ; Taïeb et al., Nucl. Phys. A 724 (2003) 413; Bernas et al., Nucl. Phys. A 725 (2003) Need for identifying all nuclides – from the lightest to the heaviest products. More than 1000 different nuclides produced in the spallation reaction.

Experimental challenge Short-lived as well as stable nuclei have to be detected.

Experimental approaches

Direct kinematics Proton beam at 1 GeV Heavy-ion target Advantages: - Excitation functions readily measured - Separation between isomer and ground-state production - Chemistry -  -spectroscopy - Accelerator-mass spectrometry Problems: - Short-lived nuclei - Very few independent yields - Limitations on target materials - No information on kinematical properties

Experimental approaches Inverse kinematics Advantages: - "All" half-lives - All nuclides - Kinematical properties Heavy-ion beam at 1 A GeV Hydrogen target Magnetic spectrometer Reaction products Problems: - Excitation functions cannot be measured in one experiment - No separation between isomer and ground-state production

Experimental approaches - Direct kinematics -

Experimental setup Irradiated samples studied by  -decay spectroscopy or in case of stable and long-lived nuclei by AMS.

Nuclide identification Titarenko et al, Phys. Rev. C65 (2002)  -ray spectra measured in p (1 GeV) Pb by Titarenko et al. To obtain cross sections one also needs: - gamma transitions - half lives - branching ratios

Excitation functions Titarenko et al, 2005 Independent and cumulative yields - About 100 (mostly cumulative) yields/system - Uncertainty 7 – 30 % Additional information: - Miah et al, Nucl. Sc. Tech. Suppl. 2 (2002) Schiekel et al, Nucl. Instr. Meth. B114 (1996) 91 - Adilbish et al, Radiochem. Radioanal. Lett. 45 (1980) Chu et al, Phys. Rev. C 15 (1977) 352

Experimental approaches - Inverse kinematics -

GSI facility  UNILAC : Up to 20 A MeV  SIS : 50 – 2000 A MeV, up to part/spill

Experimental setup  max = 15 mrad  p/p =  1.5 % Resolution: -  (  )/   5·  Z   A / A  2.5  ToF   x 1, x 2  B   E  Z

Nuclide identification 238 U + 1 H at 1 A GeV Ricciardi et al, Phys. Rev. C73 (2006)

Limited momentum acceptance 31 P Overlap of measurements with different magnetic-filed settings.

Velocity distributions For each nucleus: production cross section, velocity and production mechanism FISSION FRAGMENTATION 238 U (1 AGeV) + 2 H Pereira, PhD thesis Limited angular acceptance of FRS together with different kinematical properties of fission and fragmentation residues  reaction mechanism

An overview of measured data Taieb et al, Bernas et al, Ricciardi et al Napolitani PhD Enqvist et al, Kelić et al Napolitani PhD, Villagrasa PhD

Experimental progress by inverse kinematics Example: Fission of lead induced by ≈ 500 MeV protons Protons (553 MeV) on lead 208 Pb (500 A MeV) on hydrogen

Experimental progress by inverse kinematics ProjectileTargetEnergy [A GeV] 56 Fe 1 H, 2 H ,124 Xe 1,2 H, Be, Ti, Pb0.2, 0.5, Au 1H1H Pb 1,2 H, Ti0.5, U 1,2 H, Ti, Pb1 Data accuracy: Statistic: below 3% Systematic: % More than 1000 nuclei/system measured Data available at:

Measured cross sections Model calculations Model calculations (model developed at GSI) : Experimental data: 238 U (1 A GeV) + 1 H

Next generation experiments

Future - Full identification of heavy residues with simultaneous measurement of neutrons, light charged particles and gammas  Aiming for a kinematically complete experiment. -Increased beam energies and intensities -Spectrometers with larger acceptance and/or better resolution

FAIR Neutrons Heavy fragments Exotic beam from Super-FRS Protons Target  -rays Neutrons Protons Tracking detectors:  E, x, y, ToF, B  Neutrons High-resolution spectrometer Exclusive experiments and high resolution!

Conclusions - Large field of applications - Two approaches - Direct kinematics – excitation functions, direct measurement on long-term activation - Inverse kinematics – more than 1000 nuclides / system, information on velocities and production mechanisms. The combined information of these two techniques form the basis for an improved understanding of the nuclear-reaction aspects and for essential improvements of the nuclear models. - New generation of experiments in preparations. Goal -> kinematically complete experiment

Collaboration GSI P. Armbruster, A. Bacquias, T. Enqvist, L. Giot, K. Helariutta, V. Henzl, D. Henzlova, B. Jurado, A. Keli ć, P. Nadtochy, R. Pleska č, M. V. Ricciardi, K.-H. Schmidt, C. Schmitt, F. Vives, O. Yordanov IPN-Paris L. Audouin, M. Bernas, B. Mustapha, P. Napolitani, F. Rejmund, C. Stéphan, J. Taïeb, L. Tassan-Got CEA-Saclay A. Boudard, L. Donadille, J.-E. Ducret, B. Fernandez, R. Legran, S. Leray, C. Villagrasa, C. Volant, W. Wlaz ł o University Santiago de Compostela J. Benlliure, E. Casarejos, M. Fernandez, J. Pereira CENBG-Bordeaux S. Czajkowski, M. Pravikoff 14 PhD