Warm Up Finish your matching activity from yesterday and get a HW sheet from the front.Finish your matching activity from yesterday and get a HW sheet.

Slides:



Advertisements
Similar presentations
Lesson 8-1: Multiplying and Dividing Rational Expressions
Advertisements

Rational Equations and Functions
Warm Up - Factor the following completely : 1. 3x 2 -8x x x x 3 +2x 2 -4x x 2 -x x (3x-2)(x-2) 11(x+3)(x-3)
Transforming reciprocal functions. DO NOW Assignment #59  Pg. 503, #11-17 odd.
Create a table and Graph:. Reflect: Continued x-intercept: y-intercept: Asymptotes: xy -31/3 -21/2 1 -1/22 xy 1/ /2 3-1/3.
Section4.2 Rational Functions and Their Graphs. Rational Functions.
ACT Class Opener: om/coord_1213_f016.htm om/coord_1213_f016.htm
3.6 Warm Up Find the initial point, state the domain & range, and compare to the parent function f(x) = √x. y = 3√x – 1 y = -1/2√x y = - √(x-1) + 2.
3.6 Graph Rational Functions Part II. Remember Rational functions have asymptotes To find the vertical asymptote, set the denominator = 0 and solve for.
Rational Functions. To sketch the graph of a rational function: Determine if the function points of discontinuity for the.
Types of Variation. How can we Identify an Inverse Variation? x y
Warm Up #5.
Asymptotes Objective: -Be able to find vertical and horizontal asymptotes.
Graphing Rational Functions
What is the symmetry? f(x)= x 3 –x.
10-1 Inverse Variation 10-2 Rational Functions 10-3 Simplifying Rational Expressions 10-4 Multiplying and Dividing Rational Expressions 10-5 Adding and.
Warm Up 1)Suppose y varies inversely with x, Write an equation that includes the point (4,2) 2)The length of a violin string varies inversely as the frequency.
Chapter 12 Rational Expressions and Functions 12 – 1 Inverse Variation If you are looking at the relationship between two things and one increases as the.
Adding and Subtracting Rational Expressions. WARM UP 1) Suppose y varies inversely with x, Write an equation that includes the point (4,2) 2) The length.
Standard 44: Domains of Rational Expressions BY: ABBIE, ABBY, HARLEY, COLE.
Rational Functions Essential Questions
Rational Functions Objective: Finding the domain of a rational function and finding asymptotes.
Warm Up Solve each equation for y. 1.x = -4y 2.x = 2y x = (y + 3)/3 4.x = -1/3 (y + 1)
Warm up:. Notes 7.2: Graphing Rational Functions.
Notes Over 9.2 Graphing a Rational Function The graph of a has the following characteristics. Horizontal asymptotes: center: Then plot 2 points to the.
GRAPHING RATIONAL FUNCTIONS. Warm Up 1) The volume V of gas varies inversely as the pressure P on it. If the volume is 240 under pressure of 30. Write.
Chapter 8 Rational Expressions, Equations, and Inequalities and Other Functions Taught by: Nicky Chan, Aaron Hong, Alina Kim, William Qin, and Nathan Si.
Twenty Questions Rational Functions Twenty Questions
Lesson 21 Finding holes and asymptotes Lesson 21 February 21, 2013.
Entry Task The inverse variation xy = 8 relates the constant speed x in mi/h to the time y in hours that it takes to travel 8 miles. Graph this inverse.
Adv. Alg., Chapter 9 Algebra 2 – Chapter 7 JEOPARDYJEOPARDY.
CHAPTER 9: RATIONAL FUNCTIONS. 9.1 INVERSE VARIATION.
Warm UpOct. 10. Direct & Inverse Variation October 10, 2014.
Warmup 3-24 Simplify. Show work! Solve for x. Show work! 4. 5.
GRAPHING SIMPLE RATIONAL FUNCTIONS. Investigation Graph the following using the normal window range. Draw a rough sketch of these functions on the back.
Algebra 2 Notes May 20, Homework #63 Answers 1) 4) 7) direct; 8) inverse; 12) neither 13) 17) A varies jointly with b and h 18) h varies directly.
Section 2.6 Rational Functions Part 2
Graphs of Rational Functions
Increasing Decreasing Constant Functions.
Rational Functions (Algebraic Fractions)
Homework:.
Warm-up 1)
State the domain and range.
Rational Functions and Their Graphs
Section 3.5 Rational Functions and Their Graphs
Transformations of Graphs and Inverses
Graph Simple Rational Functions
Graphing more challenging Rational Functions
Adding and Subtracting Rational Expressions
Do Now What are the transformations, domain, and range of the following:
Rational Functions and Asymptotes
Adding and Subtracting Rational Expressions
Notes Over 9.3 Graphing a Rational Function (m < n)
Introduction to Rational Equations
Simplifying rational expressions
2.6 Section 2.6.
Warm-up: Match the inequality with the interval notation:
Unit 3 Practice Test.
Rational Functions Essential Questions
2.6 Rational Functions and Their Graphs
Domain, Range, Vertical Asymptotes and Horizontal Asymptotes
Warm Up – 12/4 - Wednesday Rationalize: − 5.
Warm-up: State the domain.
Warm Up – Tuesday – 12/3 Rationalize the following: − 5.
Warm Up 8.2, Day 1 Translate into an equation.
Warm- up For each find the transformation, domain, range, End Behavior and Increasing and Decreasing Interval. 1. y=(x+3) y = log x y.
Which is not an asymptote of the function
Adding and Subtracting Rational Expressions
SIMPLIFYING RATIONAL EXPRESSIONS & DOMAIN
Presentation transcript:

Warm Up Finish your matching activity from yesterday and get a HW sheet from the front.Finish your matching activity from yesterday and get a HW sheet from the front. Matching activity will be due in 15 minutes!Matching activity will be due in 15 minutes!

Direct & Inverse Variation March 14 th, 2014

Direct Variation

Example set 1

Example set 2

You Try!

Inverse Variation What DOES NOT work in the denominator?

Example 1

Write the inverse variation…

Example Suppose y = - 8 varies inversely with x = -32 Write the equation for inverse variationSuppose y = - 8 varies inversely with x = -32 Write the equation for inverse variation What is x when y = - 4?What is x when y = - 4?

Partner Race-Direct Variation The first set of partners to finish the puzzles on FRONT & BACK get a prize!The first set of partners to finish the puzzles on FRONT & BACK get a prize!

Partner Race-Inverse Variation The first set of partners to finish the puzzles on FRONT & BACK get a prize!The first set of partners to finish the puzzles on FRONT & BACK get a prize!

Homework WorksheetWorksheet

Warm Up 2) Suppose y = - 4 varies inversely with x = -108 Write the equation for inverse variation. What is x when y = 16?

Graphing Rational Functions March 17 th, 2014

Direct vs. Inverse

Graphs

Graph: Example 1 What is the DOMAIN & RANGE for this graph? Do you remember how to write it in interval notation? DOMAIN: RANGE:

Graph: Example 2 XY Domain: Range:

Graph: Example 3 XY Domain: Range:

General Form of Rational

Some tips on graphing…

Transformations

Graph: Example 1

Summary Vertical Asymptotes are of the form x = # and can be found in the denominator (bottom of the fraction)Vertical Asymptotes are of the form x = # and can be found in the denominator (bottom of the fraction) Horizontal Asymptotes are of the form y = # and can be found added or subtracted next to the function.Horizontal Asymptotes are of the form y = # and can be found added or subtracted next to the function.

Graph: Example 2

What does “a” do to the graph?

Try to graph this one! What are the transformations? XY Transformations: Domain: Range:

Try to graph this one! What are the transformations? XY Transformations: Domain: Range:

Try to graph this one! What are the transformations? XY Transformations: Domain: Range:

Try to graph this one! What are the transformations? XY Transformations: Domain: Range:

Try to graph this one! What are the transformations? XY Transformations: Domain: Range:

Partner Race! Complete the standardized test prep questions correctly FIRST and you will win a prize!Complete the standardized test prep questions correctly FIRST and you will win a prize!

ANSWERS A I D Equation: s = (720/t) - pEquation: s = (720/t) - p Answer = 144 minutes Answer = 144 minutes

A Function Fable-TICKET OUT Complete the three graphs for the “A Function Fable”Complete the three graphs for the “A Function Fable”

Homework Worksheet!Worksheet!