SE301_Topic 6Al-Amer20051 SE301:Numerical Methods Topic 6 Numerical Integration Dr. Samir Al-Amer Term 053.

Slides:



Advertisements
Similar presentations
Numerical Integration
Advertisements

1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.
Section 5.7 Numerical Integration. Approximations for integrals: Riemann Sums, Trapezoidal Rule, Simpson's Rule Riemann Sum: Trapezoidal Rule: Simpson’s.
Chapter 7 Numerical Differentiation and Integration
Today’s class Romberg integration Gauss quadrature Numerical Methods
Numerical Integration
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 30 Numerical Integration & Differentiation.
MANE 4240 & CIVL 4240 Introduction to Finite Elements Numerical Integration in 1D Prof. Suvranu De.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 29 Numerical Integration.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall Slide 5- 1.
MA/CS 375 Fall MA/CS 375 Fall 2002 Lecture 32.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Numerical Differentiation and Integration Standing.
CISE-301: Numerical Methods Topic 1: Introduction to Numerical Methods and Taylor Series Lectures 1-4: KFUPM.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Numerical Differentiation and Integration Standing.
CISE301_Topic7KFUPM1 SE301: Numerical Methods Topic 7 Numerical Integration Lecture KFUPM Read Chapter 21, Section 1 Read Chapter 22, Sections 2-3.
CISE301_Topic71 SE301: Numerical Methods Topic 7 Numerical Integration Lecture KFUPM (Term 101) Section 04 Read Chapter 21, Section 1 Read Chapter.
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Numerical Differentiation and Integration Part 6 Calculus.
Integration. Problem: An experiment has measured the number of particles entering a counter per unit time dN(t)/dt, as a function of time. The problem.
Simpson’s 1/3 rd Rule of Integration. What is Integration? Integration The process of measuring the area under a.
Chapter 4, Integration of Functions. Open and Closed Formulas x 1 =a x 2 x 3 x 4 x 5 =b Closed formula uses end points, e.g., Open formulas - use interior.
1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.
3. Numerical integration (Numerical quadrature) .
Lecture 19 - Numerical Integration CVEN 302 July 22, 2002.
Numerical Computation
1 Chapter 7 NUMERICAL INTEGRATION. 2 PRELIMINARIES We use numerical integration when the function f(x) may not be integrable in closed form or even in.
1 Numerical Analysis Lecture 12 Numerical Integration Dr. Nader Okasha.
1 Simpson’s 1/3 rd Rule of Integration. 2 What is Integration? Integration The process of measuring the area under a curve. Where: f(x) is the integrand.
Introduction to Numerical Analysis I
Chapters 5 and 6: Numerical Integration
4.6 Numerical Integration Trapezoid and Simpson’s Rules.
CSE 330 : Numerical Methods
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall Slide 5- 1.
9/14/ Trapezoidal Rule of Integration Major: All Engineering Majors Authors: Autar Kaw, Charlie Barker
1 Trapezoidal Rule of Integration. What is Integration Integration: The process of measuring the area under a function.
MA2213 Lecture 4 Numerical Integration. Introduction Definition is the limit of Riemann sums I(f)
Chapter 5 Integral. Estimating with Finite Sums Approach.
CISE-301: Numerical Methods Topic 1: Introduction to Numerical Methods and Taylor Series Lectures 1-4: KFUPM CISE301_Topic1.
CISE301_Topic11 CISE-301: Numerical Methods Topic 1: Introduction to Numerical Methods and Taylor Series Lectures 1-4:
4-3 DEFINITE INTEGRALS MS. BATTAGLIA – AP CALCULUS.
Homework questions thus far??? Section 4.10? 5.1? 5.2?
EE3561_Unit 7Al-Dhaifallah EE 3561 : Computational Methods Unit 7 Numerical Integration Dr. Mujahed AlDhaifallah ( Term 342)
Integration Copyright © Cengage Learning. All rights reserved.
SECTION 4-4 A Second Fundamental Theorem of Calculus.
Trapezoidal Rule of Integration
Chap. 11 Numerical Differentiation and Integration
CHAPTER 3 NUMERICAL METHODS
CSE 330 : Numerical Methods Lecture 15: Numerical Integration - Trapezoidal Rule Dr. S. M. Lutful Kabir Visiting Professor, BRAC University & Professor.
Chapter 5 – The Definite Integral. 5.1 Estimating with Finite Sums Example Finding Distance Traveled when Velocity Varies.
6. Numerical Integration 6.1 Definition of numerical integration. 6.2 Reasons to use numerical integration. 6.3 Formulas of numerical Integration. 6.4.
The purpose of Chapter 5 is to develop the basic principles of numerical integration Usefule Words integrate, integral 积分(的), integration 积分(法), quadrature.
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Part 5 Integration and Differentiation.
3/12/ Trapezoidal Rule of Integration Computer Engineering Majors Authors: Autar Kaw, Charlie Barker
Definite Integral df. f continuous function on [a,b]. Divide [a,b] into n equal subintervals of width Let be a sample point. Then the definite integral.
Quadrature – Concepts (numerical integration) Don Allen.
Numerical Integration
Chapter 4, Integration of Functions
NUMERICAL DIFFERENTIATION Forward Difference Formula
1. 2 What is Integration? Integration The process of measuring the area under a curve. Where: f(x) is the integrand a= lower limit of integration b=
NUMERICAL INTEGRATION
Copyright © Cengage Learning. All rights reserved.
Fundamental Theorem of Calculus
Copyright © Cengage Learning. All rights reserved.
Numerical Computation and Optimization
Simpson’s 1/3rd Rule of Integration
Numerical Integration
Numerical Computation and Optimization
Objectives Approximate a definite integral using the Trapezoidal Rule.
Numerical Computation and Optimization
CISE-301: Numerical Methods Topic 1: Introduction to Numerical Methods and Taylor Series Lectures 1-4: KFUPM CISE301_Topic1.
Presentation transcript:

SE301_Topic 6Al-Amer20051 SE301:Numerical Methods Topic 6 Numerical Integration Dr. Samir Al-Amer Term 053

SE301_Topic 6Al-Amer20052 Lecture 17 Introduction to Numerical Integration  Definitions  Upper and Lower Sums  Trapezoid Method  Examples

SE301_Topic 6Al-Amer20053 Integration Indefinite Integrals Indefinite Integrals of a function are functions that differ from each other by a constant. Definite Integrals Definite Integrals are numbers.

SE301_Topic 6Al-Amer20054 Fundamental Theorem of Calculus

SE301_Topic 6Al-Amer20055 The Area Under the Curve One interpretation of the definite integral is Integral = area under the curve ab f(x)

SE301_Topic 6Al-Amer20056 Numerical Integration Methods Numerical integration Methods Covered in this course  Upper and Lower Sums  Newton-Cotes Methods:  Trapezoid Rule  Simpson Rules  Romberg Method  Gauss Quadrature

SE301_Topic 6Al-Amer20057 Upper and Lower Sums ab f(x) The interval is divided into subintervals

SE301_Topic 6Al-Amer20058 Upper and Lower Sums ab f(x)

SE301_Topic 6Al-Amer20059 Example

SE301_Topic 6Al-Amer Example

SE301_Topic 6Al-Amer Upper and Lower Sums Estimates based on Upper and Lower Sums are easy to obtain for monotonic functions (always increasing or always decreasing). For non-monotonic functions, finding maximum and minimum of the function can be difficult and other methods can be more attractive.

SE301_Topic 6Al-Amer Newton-Cotes Methods  In Newton-Cote Methods, the function is approximated by a polynomial of order n  Computing the integral of a polynomial is easy.

SE301_Topic 6Al-Amer Newton-Cotes Methods Trapezoid Method ( First Order Polynomial are used ) Simpson 1/3 Rule ( Second Order Polynomial are used ),

SE301_Topic 6Al-Amer Trapezoid Method f(x)

SE301_Topic 6Al-Amer Trapezoid Method Derivation-One interval

SE301_Topic 6Al-Amer Trapezoid Method f(x)

SE301_Topic 6Al-Amer Trapezoid Method Multiple Application Rule ab f(x) x

SE301_Topic 6Al-Amer Trapezoid Method General Formula and special case

SE301_Topic 6Al-Amer Example Given a tabulated values of the velocity of an object. Obtain an estimate of the distance traveled in the interval [0,3]. Time (s) Velocity (m/s) Distance = integral of the velocity

SE301_Topic 6Al-Amer Example 1 Time (s) Velocity (m/s)

SE301_Topic 6Al-Amer Estimating the Error For Trapezoid method

SE301_Topic 6Al-Amer Error in estimating the integral Theorem

SE301_Topic 6Al-Amer Example

SE301_Topic 6Al-Amer Example x f(x)

SE301_Topic 6Al-Amer Example x f(x)

SE301_Topic 6Al-Amer SE301: Numerical Method Lecture 18 Recursive Trapezoid Method Recursive formula is used

SE301_Topic 6Al-Amer Recursive Trapezoid Method f(x)

SE301_Topic 6Al-Amer Recursive Trapezoid Method f(x) Based on previous estimate Based on new point

SE301_Topic 6Al-Amer Recursive Trapezoid Method f(x) Based on previous estimate Based on new points

SE301_Topic 6Al-Amer Recursive Trapezoid Method Formulas

SE301_Topic 6Al-Amer Recursive Trapezoid Method

SE301_Topic 6Al-Amer Advantages of Recursive Trapezoid Recursive Trapezoid:  Gives the same answer as the standard Trapezoid method.  Make use of the available information to reduce computation time.  Useful if the number of iterations is not known in advance.

SE301_Topic 6Al-Amer SE301:Numerical Methods 19. Romberg Method Motivation Derivation of Romberg Method Romberg Method Example When to stop?

SE301_Topic 6Al-Amer Motivation for Romberg Method  Trapezoid formula with an interval h gives error of the order O(h 2 )  We can combine two Trapezoid estimates with intervals 2h and h to get a better estimate.

SE301_Topic 6Al-Amer Romberg Method First column is obtained using Trapezoid Method R(0,0) R(1,0)R(1,1) R(2,0)R(2,1)R(2,2) R(3,0)R(3,1)R(3,2)R(3,3) The other elements are obtained using the Romberg Method

SE301_Topic 6Al-Amer First Column Recursive Trapezoid Method

SE301_Topic 6Al-Amer Derivation of Romberg Method

SE301_Topic 6Al-Amer Romberg Method R(0,0) R(1,0)R(1,1) R(2,0)R(2,1)R(2,2) R(3,0)R(3,1)R(3,2)R(3,3)

SE301_Topic 6Al-Amer Property of Romberg Method R(0,0) R(1,0)R(1,1) R(2,0)R(2,1)R(2,2) R(3,0)R(3,1)R(3,2)R(3,3) Error Level

SE301_Topic 6Al-Amer Example /81/3

SE301_Topic 6Al-Amer Example 1 cont /81/3 11/321/3

SE301_Topic 6Al-Amer When do we stop?

SE301_Topic 6Al-Amer SE301:Numerical Methods 20. Gauss Quadrature Motivation General integration formula Read

SE301_Topic 6Al-Amer Motivation

SE301_Topic 6Al-Amer General Integration Formula

SE301_Topic 6Al-Amer Lagrange Interpolation

SE301_Topic 6Al-Amer Question What is the best way to choose the nodes and the weights?

SE301_Topic 6Al-Amer Theorem

SE301_Topic 6Al-Amer Weighted Gaussian Quadrature Theorem

SE301_Topic 6Al-Amer Determining The Weights and Nodes

SE301_Topic 6Al-Amer Determining The Weights and Nodes Solution

SE301_Topic 6Al-Amer Theorem

SE301_Topic 6Al-Amer Determining The Weights and Nodes Solution

SE301_Topic 6Al-Amer Determining The Weights and Nodes Solution

SE301_Topic 6Al-Amer Gaussian Quadrature See more in Table 22.1 (page 626) 626

SE301_Topic 6Al-Amer Error Analysis for Gauss Quadrature 627

SE301_Topic 6Al-Amer Example

SE301_Topic 6Al-Amer Example

SE301_Topic 6Al-Amer Improper Integrals 627

SE301_Topic 6Al-Amer Quiz x f(x)