SE301_Topic 6Al-Amer20051 SE301:Numerical Methods Topic 6 Numerical Integration Dr. Samir Al-Amer Term 053
SE301_Topic 6Al-Amer20052 Lecture 17 Introduction to Numerical Integration Definitions Upper and Lower Sums Trapezoid Method Examples
SE301_Topic 6Al-Amer20053 Integration Indefinite Integrals Indefinite Integrals of a function are functions that differ from each other by a constant. Definite Integrals Definite Integrals are numbers.
SE301_Topic 6Al-Amer20054 Fundamental Theorem of Calculus
SE301_Topic 6Al-Amer20055 The Area Under the Curve One interpretation of the definite integral is Integral = area under the curve ab f(x)
SE301_Topic 6Al-Amer20056 Numerical Integration Methods Numerical integration Methods Covered in this course Upper and Lower Sums Newton-Cotes Methods: Trapezoid Rule Simpson Rules Romberg Method Gauss Quadrature
SE301_Topic 6Al-Amer20057 Upper and Lower Sums ab f(x) The interval is divided into subintervals
SE301_Topic 6Al-Amer20058 Upper and Lower Sums ab f(x)
SE301_Topic 6Al-Amer20059 Example
SE301_Topic 6Al-Amer Example
SE301_Topic 6Al-Amer Upper and Lower Sums Estimates based on Upper and Lower Sums are easy to obtain for monotonic functions (always increasing or always decreasing). For non-monotonic functions, finding maximum and minimum of the function can be difficult and other methods can be more attractive.
SE301_Topic 6Al-Amer Newton-Cotes Methods In Newton-Cote Methods, the function is approximated by a polynomial of order n Computing the integral of a polynomial is easy.
SE301_Topic 6Al-Amer Newton-Cotes Methods Trapezoid Method ( First Order Polynomial are used ) Simpson 1/3 Rule ( Second Order Polynomial are used ),
SE301_Topic 6Al-Amer Trapezoid Method f(x)
SE301_Topic 6Al-Amer Trapezoid Method Derivation-One interval
SE301_Topic 6Al-Amer Trapezoid Method f(x)
SE301_Topic 6Al-Amer Trapezoid Method Multiple Application Rule ab f(x) x
SE301_Topic 6Al-Amer Trapezoid Method General Formula and special case
SE301_Topic 6Al-Amer Example Given a tabulated values of the velocity of an object. Obtain an estimate of the distance traveled in the interval [0,3]. Time (s) Velocity (m/s) Distance = integral of the velocity
SE301_Topic 6Al-Amer Example 1 Time (s) Velocity (m/s)
SE301_Topic 6Al-Amer Estimating the Error For Trapezoid method
SE301_Topic 6Al-Amer Error in estimating the integral Theorem
SE301_Topic 6Al-Amer Example
SE301_Topic 6Al-Amer Example x f(x)
SE301_Topic 6Al-Amer Example x f(x)
SE301_Topic 6Al-Amer SE301: Numerical Method Lecture 18 Recursive Trapezoid Method Recursive formula is used
SE301_Topic 6Al-Amer Recursive Trapezoid Method f(x)
SE301_Topic 6Al-Amer Recursive Trapezoid Method f(x) Based on previous estimate Based on new point
SE301_Topic 6Al-Amer Recursive Trapezoid Method f(x) Based on previous estimate Based on new points
SE301_Topic 6Al-Amer Recursive Trapezoid Method Formulas
SE301_Topic 6Al-Amer Recursive Trapezoid Method
SE301_Topic 6Al-Amer Advantages of Recursive Trapezoid Recursive Trapezoid: Gives the same answer as the standard Trapezoid method. Make use of the available information to reduce computation time. Useful if the number of iterations is not known in advance.
SE301_Topic 6Al-Amer SE301:Numerical Methods 19. Romberg Method Motivation Derivation of Romberg Method Romberg Method Example When to stop?
SE301_Topic 6Al-Amer Motivation for Romberg Method Trapezoid formula with an interval h gives error of the order O(h 2 ) We can combine two Trapezoid estimates with intervals 2h and h to get a better estimate.
SE301_Topic 6Al-Amer Romberg Method First column is obtained using Trapezoid Method R(0,0) R(1,0)R(1,1) R(2,0)R(2,1)R(2,2) R(3,0)R(3,1)R(3,2)R(3,3) The other elements are obtained using the Romberg Method
SE301_Topic 6Al-Amer First Column Recursive Trapezoid Method
SE301_Topic 6Al-Amer Derivation of Romberg Method
SE301_Topic 6Al-Amer Romberg Method R(0,0) R(1,0)R(1,1) R(2,0)R(2,1)R(2,2) R(3,0)R(3,1)R(3,2)R(3,3)
SE301_Topic 6Al-Amer Property of Romberg Method R(0,0) R(1,0)R(1,1) R(2,0)R(2,1)R(2,2) R(3,0)R(3,1)R(3,2)R(3,3) Error Level
SE301_Topic 6Al-Amer Example /81/3
SE301_Topic 6Al-Amer Example 1 cont /81/3 11/321/3
SE301_Topic 6Al-Amer When do we stop?
SE301_Topic 6Al-Amer SE301:Numerical Methods 20. Gauss Quadrature Motivation General integration formula Read
SE301_Topic 6Al-Amer Motivation
SE301_Topic 6Al-Amer General Integration Formula
SE301_Topic 6Al-Amer Lagrange Interpolation
SE301_Topic 6Al-Amer Question What is the best way to choose the nodes and the weights?
SE301_Topic 6Al-Amer Theorem
SE301_Topic 6Al-Amer Weighted Gaussian Quadrature Theorem
SE301_Topic 6Al-Amer Determining The Weights and Nodes
SE301_Topic 6Al-Amer Determining The Weights and Nodes Solution
SE301_Topic 6Al-Amer Theorem
SE301_Topic 6Al-Amer Determining The Weights and Nodes Solution
SE301_Topic 6Al-Amer Determining The Weights and Nodes Solution
SE301_Topic 6Al-Amer Gaussian Quadrature See more in Table 22.1 (page 626) 626
SE301_Topic 6Al-Amer Error Analysis for Gauss Quadrature 627
SE301_Topic 6Al-Amer Example
SE301_Topic 6Al-Amer Example
SE301_Topic 6Al-Amer Improper Integrals 627
SE301_Topic 6Al-Amer Quiz x f(x)