Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
DYNAMICS OF TRAPPED BOSE AND FERMI GASES
John E. Thomas Students: Joe Kinast, Bason Clancy,
What Do High Tc Superconductors Teach Us About Ultracold Superfluids and Vice Versa? Fermi National Laboratory Jan 2007.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Experiments with ultracold atomic gases Andrey Turlapov Institute of Applied Physics, Russian Academy of Sciences Nizhniy Novgorod.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Universal Thermodynamics of a Unitary Fermi gas Takashi Mukaiyama University of Electro-Communications.
Sound velocity and multibranch Bogoliubov - Anderson modes of a Fermi superfluid along the BEC-BCS crossover Tarun Kanti Ghosh Okayama University, Japan.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Title “Ultracold gases – from the experimenters’ perspective (II)” Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
What Do Ultracold Fermi Superfluids Teach Us About Quark Gluon and Condensed Matter Wichita, Kansas March 2012.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
Theory of interacting Bose and Fermi gases in traps
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Experiments with ultracold atomic gases
Strongly interacting scale-free matter in cold atoms Yusuke Nishida March 12, MIT Faculty Lunch.
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Introduction to Ultracold Atomic Gases Qijin Chen.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Quantum Monte Carlo methods applied to ultracold gases Stefano Giorgini Istituto Nazionale per la Fisica della Materia Research and Development Center.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
PROBING HOMOGENEOUS QUANTITIES IN A TRAPPED INHOMOGENEOUS FERMI GAS FERMI SURFACE, TAN’S CONTACT AND THE SPECTRAL FUNCTION Yoav Sagi, JILA/CU, Boulder.
E. Kuhnle, P. Dyke, M. Mark, Chris Vale S. Hoinka, Chris Vale, P. Hannaford Swinburne University of Technology, Melbourne, Australia P. Drummond, H. Hu,
1/23 BCS-BEC crossover in relativistic superfluid Yusuke Nishida (University of Tokyo) with Hiroaki Abuki (Yukawa Institute) ECT*19 May, 2005.
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Theory of interacting Bose and Fermi gases in traps Sandro Stringari University of Trento Crete, July 2007 Summer School on Bose-Einstein Condensation.
Recent Progress in Ultracold Atoms Erich Mueller -- Cornell University.
Lecture III Trapped gases in the classical regime Bilbao 2004.
Superfluidity in atomic Fermi gases Luciano Viverit University of Milan and CRS-BEC INFM Trento CRS-BEC inauguration meeting and Celebration of Lev Pitaevskii’s.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Quantum phase transition in an atomic Bose gas with Feshbach resonances M.W.J. Romans (Utrecht) R.A. Duine (Utrecht) S. Sachdev (Yale) H.T.C. Stoof (Utrecht)
VORTICES IN BOSE-EINSTEIN CONDENSATES TUTORIAL R. Srinivasan IVW 10, TIFR, MUMBAI 8 January 2005 Raman Research Institute, Bangalore.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Eiji Nakano, Dept. of Physics, National Taiwan University Outline: 1)Experimental and theoretical background 2)Epsilon expansion method at finite scattering.
C. Salomon Saclay, June 2, 2010 Thermodynamics of a Tunable Fermi Gas.
Unitarity potentials and neutron matter at unitary limit T.T.S. Kuo (Stony Brook) H. Dong (Stony Brook), R. Machleidt (Idaho) Collaborators:
What have we learned so far about dilute Fermi gases? Aurel Bulgac University of Washington, Seattle These slides will be posted shortly at
The Ohio State University
Ingrid Bausmerth Alessio Recati Sandro Stringari Ingrid Bausmerth Alessio Recati Sandro Stringari Chandrasekhar-Clogston limit in Fermi mixtures with unequal.
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Trento, June 4, 2009 Gentaro Watanabe, Franco Dalfovo, Giuliano Orso, Francesco Piazza, Lev P. Pitaevskii, and Sandro Stringari.
- Founded by INFM (Istituto Nazionale per la Fisica della Materia) June Hosted by University of Trento (Physics Department) - Director: Sandro Stringari.
Is a system of fermions in the crossover BCS-BEC regime a new type of superfluid? Finite temperature properties of a Fermi gas in the unitary regime.
Soliton-core filling in superfluid Fermi gases with spin imbalance Collaboration with: G. Lombardi, S.N. Klimin & J. Tempere Wout Van Alphen May 18, 2016.
Measuring Entropy and Quantum Viscosity in a Strongly Interacting Atomic Fermi Gas Support: ARO NSF DOE NASA* John E. Thomas Ken O’Hara* Mike Gehm* Stephen.
 expansion in cold atoms Yusuke Nishida (INT, U. of Washington  MIT) in collaboration with D. T. Son (INT) 1. Fermi gas at infinite scattering length.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Extremely dilute, but strongly correlated: Experiments with ultracold fermions.
Superfluidity of ultracold
strongly interacting fermions: from spin mixtures to mixed species
Spectroscopy of Superfluid Atomic Fermi Gases
Molecular Transitions in Fermi Condensates
What do we know about the state of
What do we know about the state of
Department of Physics, Fudan University, Shanghai, China
Presentation transcript:

Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12, C. Chin 13, J.-H. Denschalg 1, and R. Grimm 12 1 Institute for Experimental Physics, Innsbruck University, Innsbruck, Austria 2 Institute for Quantum Optics and Quantum Information, Innsbruck, Austria 3 James Franck institute and Department of physics, U. of Chicago, USA

Experiments on ultracold Fermi gases Hydrohynamic expansion (Duke, ENS...) Bose condensate of molecules (Innsbruck, JILA, MIT) Vortices in fermionic superfluid (MIT) Fermions in optical lattices (ETH, Florence) BEC-BCS crossover (Science 04)

Phase diagram of a balanced two-component Fermi gas Binding energy (E F ) Temp. (T F ) Thermal Fermi gas Thermal bosons Deg. Fermi gas Bose-Einstein condensation Cooper pairing   Superconductor High-Tc He-3 6 Li M. Holland

The Mag net ic handle: Feshbach resonance Scattering between |1> and |2> BEC regimeBCS regime 834G a>0a<0 mol. state Our Fermi energy: h 15 kHz No interaction Tunable interaction

6 Li experiment (Innsbruck, Austria) 6 Li Gas in a harmonic trap Fermi temperature~ 1  K Atomic separation ~ 200nm Interaction range ~ 1 nm Particle number~ 10 5 Geometry: 3D harmonic trap 100  m 4  m

Bose-Einstein condensation of Li 2 Evaporative cooling 2.6 s3 s3.6 s4.0 s BEC fraction 0~ 15%~ 30%> 90% Gaussian density profile thermal cloud BEC 676G a Jochim et al., Science (2003), Bartenstein et al., PRL (2004) Thomas - Fermi

Explore the BEC-BCS crossover Molecular BEC na 3 = BEC regime cloud size scattering length (10 3 a 0 )

Strongly interacting BEC Molecular BEC na 3 = na 3 = 0.28 BEC regime cloud size scattering length (10 3 a 0 ) Calculation based on molecular mean field

Resonant gas Molecular BEC na 3 = na 3 = 0.28 |a|   BCS regimeBEC regime cloud size scattering length (10 3 a 0 )

Strongly interacting Fermi gas Molecular BEC na 3 = na 3 = 0.28k F |a| = 6 |a|   BCS regimeBEC regime cloud size scattering length (10 3 a 0 )

Weakly interacting Fermi gas! Molecular BEC Deg. Fermi gas na m 3 = na m 3 = 0.28 k F |a| = 0.6 k F |a| = 6 |a|   BCS regimeBEC regime cloud size scattering length (10 3 a 0 ) Bartenstein et al., PRL (2004) μ~na μ~n 2/3

collective modes axial compression cigar-shaped trap 25:1 quadrupole radial

collective modes in the crossover Stringari, Europhys. Lett. 65, 749 (2004) Hu, Minguzzi, Liu, Tosi, PRL 93, (2004) Heiselberg, PRL 93, (2004) Combescot, Leyronas, Europhys. Lett. 68, 762 (2005) Manini, Salasnich, PRA 71, (2005) Bulgac, Bertsch, PRL 94, (2005) Kim, Zubarev, PRA 72, (R) (2005) Astrakharchik, Combescot, Leyronas, Stringari, PRL 95, (2005) … theory experiments: Duke; Innsbruck

µ  n  equation of state radial compression mode polytropic index → many-body physics !! is the system hydrodynamic ? no: yes: (collisionless Fermi gas) (superfluid or class. hydrodyn. gas) radial trap frequency osc. frequency BEC: µ  n unitarity: µ  n 2/3

radial compression mode (2004 data) frequency (normalized to sloshing mode) damping hydrodynamic collisionless Bartenstein et al., PRL 92, (2004)

radial compression mode (2004 data) frequency (normalized to sloshing mode) damping superfluid !!! collisionless Bartenstein et al., PRL 92, (2004) pair breaking ! uncontrolled trap ellipticity (~15%): quantitative deviations Ω x /ω x

radial compression mode exp. data from John Thomas group at Duke Kinast et al, PRA 70, (2004) theory: mean field BCS à la Leggett, Nozières & Schmitt-Rink Hu et al., PRL 93, (2004) BEC BCS expt. data consistent with mean-field BCS theory! ?

beyond mean field Phys. Rev. 105, 1119 (1957) leading correction is positive → upshift of collective-mode frequency in mBEC regime ! Lee-Huang-Yang correction

quantum Monte Carlo Lee-Huang-Yang correction !!! Lee-Huang-Yang correction !!! BEC BCS

radial mode exp. data from John Thomas group at Duke Kinast et al, PRA 70, (2004) theory: mean field BCS à la Leggett, Nozières & Schmitt-Rink Hu et al., PRL 93, (2004) BEC BCS quantum Monte Carlo, Astrakharchik et al., PRL 95, (2005) see also Manini and Salasnich, PRA 71, (2005) ?

Experiment improvement Ellipticity of the trapping beam New imaging system Lower temperatures? 6 Li

764G: na m 3 ~0.01 Experiment improvement Confirm J. Thomas group observation Lowest damping Γ/ω < 0.01

precision measurements sloshing modes beat reveals trap ellipticity of ~6% horizontal vertical can be measured with ~10 -3 uncertainty anharmonicity effects in Gaussian trap potential ~2% suppressed to few by normalization to sloshing mode compression mode accurate determination of frequency needs very low damping  optimized cooling !

radial mode (new data) BEC BCS

new measurements on collective modes confirm equation of state from quantum Monte-Carlo calculations and LHY correction rule out simple mean-field BCS theory for crossover new measurements on collective modes confirm equation of state from quantum Monte-Carlo calculations and LHY correction rule out simple mean-field BCS theory for crossover precision test of many-body theories ! Beyound L-Y correction?