VeloPix: The Pixel ASIC for the LHCb VELO Upgrade Kurt Rinnert (University of Liverpool) On behalf of the LHCb VELO group 5.6.2015 VERTEX 2015, Santa Fe,

Slides:



Advertisements
Similar presentations
10/09/2002IWoRID; Niels van Bakel1 A collaboration between the ASIC-lab Heidelberg, NIKHEF Amsterdam and the University of Oxford Beetle; a front-end chip.
Advertisements

A. Kluge January 25, Aug 27, 2012 Outline NA62 NA62 Specifications Specifications Architecture Architecture A. Kluge2.
Development of novel R/O electronics for LAr detectors Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block.
RICH Data Flow Jianchun Wang. 2 HPD Readout Electronics 944 HPDs 163 channels / HPD 1 FE Hybrid / HPD ~160 FEMs 6 FE Hybrids / FEM 1-13 Cables / FEM 20.
Phase 2 pixel electronics 21 May 2015 – CERN, Geneva First look at data compression Konstantin Androsov – INFN Pisa & University of Siena Massimo Minuti.
Timepix2 power pulsing and future developments X. Llopart 17 th March 2011.
Ivan Peric, Monolithic Detectors for Strip Region 1 CMOS periphery.
Vth INFIERI workshop April 2015 – CERN, Geneva First look at data compression Konstantin Androsov – INFN Pisa & University of Siena Massimo Minuti – INFN.
MEDIPIX3 TESTING STATUS R. Ballabriga and X. Llopart.
A Serializer ASIC for High Speed Data Transmission in Cryogenic and HiRel Environment Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group.
Recent RD50 studies have shown that silicon irradiated at these levels still delivers a signal of ~ 8ke - / MIP LHCb upgrade rationale. After collecting.
Readout electronics of the NA62 Gigatracker system G. Dellacasa 1, V.Carassiti 3, A. Ceccucci 2, S. Chiozzi 3, E. Cortina 4, A. Cotta Ramusino 3, M. Fiorini.
CHIPIX65/RD53 collaboration
U N C L A S S I F I E D FVTX Detector Readout Concept S. Butsyk For LANL P-25 group.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
M. Lo Vetere 1,2, S. Minutoli 1, E. Robutti 1 1 I.N.F.N Genova, via Dodecaneso, GENOVA (Italy); 2 University of GENOVA (Italy) The TOTEM T1.
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
Phase-1 Design. i PHC Phase /04/2008 System Overview Clock, JTAG, sync marker and power supply connections Digital output.
Pixel hybrid status & issues Outline Pixel hybrid overview ALICE1 readout chip Readout options at PHENIX Other issues Plans and activities K. Tanida (RIKEN)
11th March 2008AIDA FEE Report1 AIDA Front end electronics Report February 2008.
Development of an ASIC for reading out CCDS at the vertex detector of the International Linear Collider Presenter: Peter Murray ASIC Design Group Science.
First ideas for the Argontube electronics Shaper, simulations Block Diagram for analog path Delta Code Data Reduction Bus system, Controller Max.
14/6/2000 End Cap Muon Trigger Review at CERN 1 Muon Track Trigger Processing on Slave and Hi-pT Boards C.Fukunaga/Tokyo Metropolitan University TGC electronics.
Update on CLICpix design
J. Crooks STFC Rutherford Appleton Laboratory
Power Pulsing in Timepix3 X. Llopart CLIC Workshop, January
NUMI Off Axis NUMI Off Axis Workshop Workshop Argonne Meeting Electronics for RPCs Gary Drake, Charlie Nelson Apr. 25, 2003 p. 1.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
ClicPix ideas and a first specification draft P. Valerio.
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
BTeV Hybrid Pixels David Christian Fermilab July 10, 2006.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
CERN, 18 december 2003Coincidence Matrix ASIC PRR Coincidence ASIC modifications E.Petrolo, R.Vari, S.Veneziano INFN-Rome.
Erik Jonsson School of Engineering & Computer Science Redundant SAR ADC Architecture and Circuit Techniques for ATLAS LAr Phase-II Upgrade Ling Du 1, Hongda.
VeloPix ASIC 7 November 2013 Xavi Llopart, Tuomas Poikela, Massimiliano De Gaspari, Ken Wyllie, Jan Buytaert, Michael Campbell, Vladimir Gromov, Vladimir.
LHCb Vertex Detector and Beetle Chip
A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group Department of.
.1PXL READOUT STAR PXL READOUT requirement and one solution Xiangming Sun.
Architecture optimization and design verification of the Timepix3 and the Velopix pixel ASICs Tuomas Poikela (TUCS/CERN) SV/UVM Mini workshop.
LHCb upgrade Workshop, Oxford, Xavier Gremaud (EPFL, Switzerland)
Progress on Pixel Region Optimization and SystemVerilog Simulation Phase 2 Pixel Electronics Meeting – Progress on Pixel Region Optimization and SystemVerilog.
Development of a Front-end Pixel Chip for Readout of Micro-Pattern Gas Detectors. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,
UPDATE ON CLICPIX2 DESIGN Pierpaolo Valerio Edinei Santin
FPGA based signal processing for the LHCb Vertex detector and Silicon Tracker Guido Haefeli EPFL, Lausanne Vertex 2005 November 7-11, 2005 Chuzenji Lake,
Technical status of the Gossipo-3 : starting point for the design of the Timepix-2 March 10, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
NEWS FROM MEDIPIX3 MEASUREMENTS AND IMPACT ON TIMEPIX2 X. Llopart CERN.
Pixel structure in Timepix2 : practical limitations June 15, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
H. Krüger, , DEPFET Workshop, Heidelberg1 System and DHP Development Module overview Data rates DHP function blocks Module layout Ideas & open questions.
Mu3e Data Acquisition Ideas Dirk Wiedner July /5/20121Dirk Wiedner Mu3e meeting Zurich.
C.Beigbeder, D.Breton, M.El Berni, J.Maalmi, V.Tocut – LAL/In2p3/CNRS L.Leterrier, S. Drouet - LPC/In2p3/CNRS P. Vallerand - GANIL/CNRS/CEA SuperB -Collaboration.
The LHCb Calorimeter Triggers LAL Orsay and INFN Bologna.
e- and h+ (with leakage current compensation up to ~2nA/pixel)
End OF Column Circuits – Design Review
Digital readout architecture for Velopix
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
HV-MAPS Designs and Results I
CMS EMU TRIGGER ELECTRONICS
Development of a low power
Vertex 2005 November 7-11, 2005 Chuzenji Lake, Nikko, Japan
A Low-Power High-Speed Serializer for the LHCb Pixel Detector
Phase shifter design for Macro Pixel ASIC
VELO readout On detector electronics Off detector electronics to DAQ
Test Beam Measurements october – november, 2016
LHCb Trigger, Online and related Electronics
The LHCb Level 1 trigger LHC Symposium, October 27, 2001
A new family of pixel detectors for high frame rate X-ray applications Roberto Dinapoli†, Anna Bergamaschi, Beat Henrich, Roland Horisberger, Ian Johnson,
The LHCb Front-end Electronics System Status and Future Development
On behalf of the CEPC MOST2 Vertex detector design team
Preliminary design of the behavior level model of the chip
Presentation transcript:

VeloPix: The Pixel ASIC for the LHCb VELO Upgrade Kurt Rinnert (University of Liverpool) On behalf of the LHCb VELO group VERTEX 2015, Santa Fe, NM, USA

Outline  Introduction  VeloPix vs Timepix3  Readout Architecture  GWT Serializer  Summary VERTEX 2015 VeloPix ASIC2

Introduction  VeloPix: Hybrid pixel detector Readout ASIC for the LHCb VELO upgrade  The ASIC reads out all bunch crossings at 40 MHz VERTEX 2015 VeloPix ASIC3 Artistic impression of new VELO [1] VeloPix ASICs The VELO upgrade:  Approx Tbit/s  26 module pairs  624 ASICs  41 Mpixels

VERTEX 2015 VeloPix ASIC4 VeloPix ASIC module (12 ASICs) Highly non-uniform radiation dose: 8 x to 2 x n eq /cm 2 Module of 12 VeloPix ASICs [1]: Sensor Peak rates: Hottest chip 15.1 Gbits/s hottest module: 61.2 Gbits/s ASIC Track rates for module [2]: See Sophie Richards’ overview of the VELO upgrade: “LHCb VELO Upgrade”

VeloPix ASIC specifications VERTEX 2015 VeloPix ASIC5 FeatureVeloPixTimepix3 [2] Readout typeContinuous, trigger- less, binary Continuous, trigger- less, ToT Timing resolution/range 25 ns, 9 bits ns, 18 bits Power consumption< 1.5 W cm -2 < 1.0 W cm -2 Pixel matrix, pixel size 256 x 256, 55 um x 55 um 256 x 256, 55 um x 55 um Radiation hardness400 Mrad, SEU tolerant - Peak hit rate900 Mhits/s/ASIC 50 khits/s/pixel 80 Mhits/s/ASIC 1.2 khits/s/pixel Sensor typePlanar silicon, e- collection Various, e- and h+ collection Max. data rate20.48 Gbps5.12 Gbps Technology130 nm CMOS > x 10 x 4

Timepix3 Test Beams VERTEX 2015 VeloPix ASIC6 Timepix3 DUT 8x Timepix3 telescope SPIDR readout Mechanics: CERN Several successful test beams with different DUTs. See [4] for more about Timepix3.

VeloPix Architecture VERTEX 2015 VeloPix ASIC7 Super pixel:  2x4 pixels to reduce the data rates  30% reduction vs. single-pixel super pixel logic 128 double columns (14.08 mm) 256 rows (14.08 mm) SP63 SP62 SP61 SP0 SP1 SP2 SP63 SP62 SP61 SP0 SP1 SP2 SP63 SP62 SP61 SP0 SP1 SP2 SP63 SP62 SP61 SP0 SP1 SP2 PixelHit Processor SP0 SP63 SP62 SP61 EoC router serial DACsPLL SLOW CONTROL TIMING, FAST CTRL 2-3 mm

VeloPix Pixel Schematic VERTEX 2015 VeloPix ASIC Global threshold Front-end (Analog) Leakage Current compensation Preamp Input pad 1 pixel TpATpB TestBit Counters & Latches 4-bit Local Threshold ~43 mV/ke - (Cdet = 50 fF) MaskBit Front-end (Digital) Synch. & Clock gating ToT Threshold 6-bit LFSR clock (40MHz) Super pixel (Digital) Common for 8 pixels 9 bits Data node To next node 23 bits handshake 8 Valid event FIFO 23 bits handshake 23 bits BX ID CLOCK manager CLOCK manager 3 fF

Packet Format VERTEX 2015 VeloPix ASIC9 Packet: BX ID 9b SP addr 13b Hitmap 8b 30 bits BX ID = bunch crossing ID/ time stamp/time-of-arrival No ToT! Grouping 8 hits into one packet Range obtained from simulations Identify 2x4 SP region (6 bits at column level) 30% data reduction from sharing the BX ID and super pixel address among multiple pixels. 30% data reduction from sharing the BX ID and super pixel address among multiple pixels.

Analog Front-End Amplifier Response VERTEX 2015 VeloPix ASIC10 Input charges: 2 ke- 10 ke- 16 ke- 50 ke- Input charges: 2 ke- 10 ke- 16 ke- 50 ke- ~ ke-175 ns

Analog Front-End Pile-Up Up to 1.6% losses VERTEX 2015 VeloPix ASIC11 Front-end efficiency (x 100%) Rates up to 50 kHz per pixel

Double Column Architecture VERTEX 2015 VeloPix ASIC12 FIFONode FIFO Node FIFO 64 FIFOs 0 1 Register Arbiter Previous Node FIFO Data Size = 2 Up to 13.3 Mpackets/s Rate: Up to 305 kHz Next Node See [5] for more details. 8 digital Front-ends 8 digital Front-ends 8 analog Front-ends 8 analog Front-ends Sensor

Simulation: Latency & BX ID Length VERTEX 2015 VeloPix ASIC13 Simulation results: Efficiency: 99.99%* Hit rate: 840 Mhits/s Packet rate: 505 M/s Data rate: 16.2 Gbps Hits per packet: 1.66 Simulation results: Efficiency: 99.99%* Hit rate: 840 Mhits/s Packet rate: 505 M/s Data rate: 16.2 Gbps Hits per packet: bit BX ID (512 clocks) sufficient! Peak at 64 (highest hit rate in SP 63) Trigger-less architecture: Latency must be < BX ID range. Otherwise ambiguities in BX identification. *No analog pile-up included.

End-of-Column (EoC) Data Fabric VERTEX 2015 VeloPix ASIC14 64 EoCs Architecture equalizes data traffic in column direction! Architecture equalizes data traffic in column direction! Left Data Fabric Right Data Fabric Center Node Pixel Matrix FIFO Gbps Gbps Data Node Router/ Output logic 4.8 Gbps per bus

GWT : a 60-mW 5.12 Gbps Serializer/Transmitter VERTEX 2015 VeloPix ASIC15 Serialized 5.12 Gbps MUX 16 phases Reg data 320MHz Reg data 320MHz Driver 100 Ω 1m low-mass flex cable ∆U = ± 450mV negedge posedge clock (320MHz) pre- emphasis 16 x 195ps = 1 / 320MHz Multi-phase DLL Edge- combiner ph_0 ph_1 ph_2 ph_3 ph_14 ph_15 sel_0 sel_1 sel_15 45 mW 2mW 0.05mW 0.6mW 10mW PLL 320MHz → 5.12GHz Reg Sel D0D0 Q0Q0 MUX D1D1 Q1Q1 D2D2 Q2Q2 D3D3 Q3Q3 D4D4 Q4Q4 D14 Q1 4 MUX D15 Q1 5 data_out 5.12GHz Shift Register …as opposed to GBTX with shift register, which uses much more power

Velo_GWT Test Chip in 130nm CMOS Technology VERTEX 2015 VeloPix ASIC16  1 mm x 2 mm test chip in 130 nm CMOS technology  Power : 5.12 Gbps serializer: 15 mW, wireline driver: 45 mW  Eye diagram: +/- 200 mV is 60 ps (pseudo-random pattern)  1 mm x 2 mm test chip in 130 nm CMOS technology  Power : 5.12 Gbps serializer: 15 mW, wireline driver: 45 mW  Eye diagram: +/- 200 mV is 60 ps (pseudo-random pattern)  SEU tests performed with different ions (Nickel, Argon, Neon)  Tested simple patterns: , 000FFF  Analysis pending, results coming soon  SEU tests performed with different ions (Nickel, Argon, Neon)  Tested simple patterns: , 000FFF  Analysis pending, results coming soon

Simulation: Data transfer efficiency The VELO upgrade expected rate VERTEX 2015 VeloPix ASIC17 *no front-end pile-up taken into account GWT x4 maximum 7-bit BX ID 0.99

Downstream Data Flow VERTEX 2015 VeloPix ASIC18 Header Packet 0 Time Ordering (FPGA) Packet 2 4 x 30 bits = 120 bits Packet 3 8 bits (4 parity bits) BX ID 9b SP addr 13b Hitmap 8b Packet 1 Event Builder (PC) Software Event Filter VELO tracking budget 2 ms VELO tracking budget 2 ms

Diversion: Pixel Clustering VERTEX 2015 VeloPix ASIC19 8-way flood fill algorithm as commonly used in computer graphics applications. [6] 8-way flood fill algorithm as commonly used in computer graphics applications. [6]  Clustering on CPU was deemed too slow.  FPGA implementation very complex.  In fact, CPU clustering is feasible:  Algorithm well known in graphics applications.  Optimize for isolated Super Pixels flagged by FPGA. About 10% of VELO tracking

Power Consumption VERTEX 2015 VeloPix ASIC20 BlockP (mw)#BlocksTotal power Analog front-end Digital front-end SP column (avg) Slow control50150* EoC block * Periphery clock tree * EoC fabric * PLL * GWT Total (mW): W/cm^ *estimated/budgeted

Summary  Trigger-less readout ASIC architecture  Design driven by rate and power requirements  Reads out > 900 Mhits/s/ASIC  consuming < 1.5 W/cm 2  VeloPix builds on expertise learned during the Timepix3 design  GWT serializer (5.12Gbps/60mW) demonstrated to work, SEU tests to be analyzed VERTEX 2015 VeloPix ASIC21

References VERTEX 2015 VeloPix ASIC22 [1] LHCb VELO Upgrade TDR. CERN LHCC [2] L. Eklund, “The LHCb VELO Upgrade”, ICHEP 2014 [3] T. Poikela. “Design and Verification of Digital Architecture of 65K Pixel Readout Chip for High-Energy Physics.”, [4] T. Poikela et al. “Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout”, 2014 [5] T. Poikela et al. “Digital column readout architectures for hybrid pixel detector readout chips“, [6] "Recursive Flood Fill 8 (aka)" by André Karwath aka Aka - Own work. Licensed under CC BY-SA 2.5 via Wikimedia Commons - _Flood_Fill_8_(aka).gif

Why 2x4 super pixel? VERTEX 2015 VeloPix ASIC23 Binary encoded packets (no ToT) Super Pixel Geometry Data rate (Gbps)Packet size (#bits)Reduction (%) 256 x N x x N x x N x x x x x N x x N x x x x N x Chosen format No super pixel grouping Table: Data rates for different super pixel dimensions: N = number of pixel hits in a packet

Super Pixel Power Estimation VERTEX 2015 VeloPix ASIC24 Power for SP hitmap buffers:  Target rate approx. 300 kHz  Power approx. 20 uW  Hand-crafted clock gating (CG) works! Power for transporting the packets:  Target rate 5 MHz  Power 66 uW 128 x 64 = 8192 Super pixels per chip!! 128 x 64 = 8192 Super pixels per chip!!