Spintronics in ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds,

Slides:



Advertisements
Similar presentations
Spintronics: How spin can act on charge carriers and vice versa
Advertisements

Plzeň, Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky. Magnetický polovodič (Ga,Mn)As: technologie,
Jairo Sinova (TAMU) Challenges and chemical trends in achieving a room temperature dilute magnetic semiconductor: a spintronics tango between theory and.
Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Spin-orbit coupling based spintronics: Extraordinary magnetoresistance studies in semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher,
Spintronics in metals and semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth,
Charge Long-range magnetic order Implemented by Coupling Xavier Marti, 1.Metals:
Karel Výborný, Jan Zemen, Kamil Olejník, Petr Vašek, Miroslav Cukr, Vít Novák, Andrew Rushforth, R.P.Campion, C.T. Foxon, B.L. Gallagher, Tomáš Jungwirth.
Spintronics and Magnetic Semiconductors Joaquín Fernández-Rossier, Department of Applied Physics, University of Alicante (SPAIN) Alicante, June
Current Nanospin related theory topics in Prague in collaboration with Texas and Warsaw based primarily on Nottingham and Hitachi experimental activities.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
Semiconductor spintronics in ferromagnetic and non-magnetic p-n junctions Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
Spintronics = Spin + Electronics
JAIRO SINOVA Research fueled by: NERC Challenges and Chemical Trends in Achieving a Room Temperature Dilute Magnetic Semiconductor: A Spintronics Tango.
Making semiconductors magnetic: new materials properties, devices, and future JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi Cambridge.
Making semiconductors magnetic: new materials properties, devices, and future NRI SWAN JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi.
Ab initio study of the diffusion of Mn through GaN Johann von Pezold Atomistic Simulation Group Department of Materials Science University of Cambridge.
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Spin Injection Hall Effect: a new member of the spintronic Hall family and its implications in nano-spintronics Research fueled by: Optical Spintronics.
Research fueled by: Freie Universitaet Berlin April 12 th, 2010 JAIRO SINOVA Texas A&M University Institute of Physics ASCR New paradigms in spin-charge.
Tomas Jungwirth, Jan Mašek, Alexander Shick Karel Výborný, Jan Zemen, Vít Novák, et al. Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew.
Jairo Sinova Texas A &M University Support: References: Jungwirth et al Phys. Rev. B 72, (2005) and Jungwirth et al, Theory of ferromagnetic (III,Mn)V.
The spinning computer era Spintronics Hsiu-Hau Lin National Tsing-Hua Univ.
Research fueled by: Ohio State University February 9 th, 2010 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Exploiting the echoes of special.
Jairo Sinova Texas A &M University References: Jungwirth, Sinova et al, arXive: , and Jungwirth et al, Theory of ferromagnetic (III,Mn)V semiconductors,
School of Physics and Astronomy, University of Nottingham, UK
Research fueled by: Forschungszentrum Jülich November 11 th, 2009 JAIRO SINOVA Texas A&M University Institute of Physics ASCR Hitachi Cambridge Joerg W.
Jairo Sinova (TAMU) NRI e-Workshop Making semiconductors magnetic: A new approach to engineering quantum materials Tomas Jungwirth (TAMU, Institute of.
Theory of ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Richard Campion, Tom Foxon, Kevin Edmonds, Andrew.
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
Spintronics Tomas Jungwirth University of Nottingham Institute of Physics ASCR, Prague.
Institute of Physics ASCR
Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.
National laboratory for advanced Tecnologies and nAnoSCience Material and devices for spintronics What is spintronics? Ferromagnetic semiconductors Physical.
USING SPIN IN (FUTURE) ELECTRONIC DEVICES
Beyond ferromagnetic spintronics: antiferromagnetic I-Mn-V semiconductors Tomas Jungwirth Institute of Physics in Prague & University of Nottingham.
Anisotropic magnetoresistance effects in ferromagnetic semiconductor and metal devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon,
Spintronics and magnetic semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge.
Jairo Sinova (TAMU) Making semiconductors magnetic: A new approach to engineering quantum materials NERC SWAN.
Regensburg, Curie point singularity in GaMnAs Institute of Physics of the Academy of Sciences of the Czech Republic Division of Solid State Physics.
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Getting FM in semiconductors is not trivial. Recall why we have FM in metals: Band structure leads to enhanced exchange interactions between (relatively)
Ferromagnetic semiconductors for spintronics Kevin Edmonds, Kaiyou Wang, Richard Campion, Devin Giddings, Nicola Farley, Tom Foxon, Bryan Gallagher, Tomas.
Magneto-transport anisotropy phenomena in GaMnAs and beyond Tomas Jungwirth University of Nottingham Bryan Gallagher, Richard Campion, Kevin Edmonds, Andrew.
Spintronics in metals and semiconductors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth,
SPINTRONICS Tomáš Jungwirth Fyzikální ústav AVČR University of Nottingham.
Antiferromagnetic coulpling in spintronics Tomas Jungwirth Univ. of Nottingham, UK Institute of Physics ASCR & Charles Univ., Czech Rep. Hitachi and Univ.
Semiconductor spintronics Tomáš Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, et al. Hitachi Cambridge Jorg Wunderlich,
Electronic and Magnetic Structure of Transition Metals doped GaN Seung-Cheol Lee, Kwang-Ryeol Lee, Kyu-Hwan Lee Future Technology Research Division, KIST,
Spin-orbit coupling induced magneto-resistance effects in ferromagnetic semiconductor structures: TAMR, CBAMR, AMR Tomas Jungwirth University of Nottingham.
Spintronic transistors: magnetic anisotropy and direct charge depletion concepts Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Ferromagnetic and non-magnetic spintronic devices based on spin-orbit coupling Tomas Jungwirth Institute of Physics ASCR Alexander Shick University of.
Ferromagnetic ordering in (Ga,Mn)As related zincblende semiconductors Tomáš Jungwirth Institute of Physics ASCR František Máca, Jan Mašek, Jan Kučera Josef.
A spin-valve-like magnetoresistance of an antiferromagnet- based tunnel junction Xavier Marti,
Spin-orbit coupling and spintronics in ferromagnetic semiconductors (and metals) Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
FZU Mn-doped Ga(As,P) and (Al,Ga)As ferromagnetic semiconductors J.Mašek, J. Kudrnovský, F.Máca, T.Jungwirth, Jairo Sinova, A.H.MacDonald.
Electric-field controlled semiconductor spintronic devices
Ferromagnetic semiconductor materials and spintronic transistors Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion,
Stefano Sanvito Physics Department, Trinity College, Dublin 2, Ireland TFDOM-3 Dublin, 11th July 2002.
Introduction to Spintronics
Institute of Physics ASCR Hitachi Cambridge, Univ. Cambridge
SemiSpinNe t Research fueled by: ASRC Workshop on Magnetic Materials and Nanostructures Tokai, Japan January 10 th, 2012 Vivek Amin, JAIRO SINOVA Texas.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Extraordinary magnetoresistance in GaMnAs ohmic and Coulomb blockade devices Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard.
Dilute moment ferromagnetic semicinductors for spintronics
ZERO-MAGNETISATION SPIN-SOURCES
Presentation transcript:

Spintronics in ferromagnetic semiconductor (Ga,Mn)As Tomas Jungwirth University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth, Chris King et al. Hitachi Cambridge Jorg Wunderlich, Andrew Irvine, David Williams, Elisa de Ranieri, Byonguk Park, Sam Owen, et al. Institute of Physics ASCR Alexander Shick, Karel Výborný, Jan Zemen, Jan Masek, Vít Novák, Kamil Olejník, et al. University of Texas Allan MaDonald, et al. Texas A&M Jairo Sinova, et al.

Outline 1. Curie temperature and critical transport anomaly 2. Low-voltage control of ferromagnetism in a p-n junction 3. Coulomb-blockade AMR single electron transistor

Electric field controlled spintronics HDD, MRAM controlled by Magnetic field Magnetic Transistor control by Electric field J. Wunderlich, et al. 06 Low-voltage controlled magnetization and MR effects STT MRAM, spin-polarized charge current From storage to logic FS spintronic transitor

Mn-d-like local moments As-p-like holes Mn Ga As Mn EFEF DOS Energy spin  spin  Ferromagnetic semiconductor GaAs:Mn FM due to p-d hybridization (Zener local-itinerant kinetic-exchange) valence band As-p-like holes As-p-like holes localized on Mn acceptors << 1% Mn ~1% Mn >2% Mn onset of ferromagnetism near MIT

(Ga,Mn)As growth Low-T MBE to avoid precipitation High enough T to maintain 2D growth  need to optimize T & stoichiometry for each Mn-doping Inevitable formation of interstitial Mn-donors compensating holes and moments  need to anneal out high-T growth optimal-T growth Optimizing annealing time & temperature (removing int. Mn & keeping Mn Ga in place) again for each Mn- doping is essential

Mack et al. ’08 : “…T c = K independent of x Mn >10% contradicting Zener kinetic exchange...” Nottingham & Prague (’08): T c up to 188 K so far “Combinatorial” approach to growth with fixed growth and annealing conditions ? Mack et al. ‘08 Tc limit in (Ga,Mn)As remains open Olejnik et al., ‘08

Towards spintronics in (Ga,Mn)As: FM & transport Dense-moment MS F << d  -  Eu  - chalcogenides Dilute-moment MS F ~ d  -  Critical contribution to resistivity at T c ~ magnetic susceptibility Broad peak near T c disappeares with annealing (higher uniformity)??? 

TcTc TcTc EuCdSe Ni

d  /dT singularity at T c – consistent with k F ~d  -  Novak, et al.‘08

Optimized materials with x=4-12.5% and Tc=80-185K Remarkably universal both below and above Tc Annealing sequence

As-p-like holes Ferromagnetism & strong spin-orbit coupling Strong SO due to the As p-shell (L=1) character of the top of the valence band VV B eff p s B ex + B eff Mn Ga As Mn

Rushforth et al., ‘08 Strain & SO  Electric field control of ferromagnetism k.p kinetic exchange model predicst sensitivity to strains ~10 -4 and hole-density variations of ~ cm -3 slow and requires ~100V

Gating of the highly doped (Ga,Mn)As: p-n junction p-n junction depletion estimates Olejnik et al., ‘08 ~25% depletion feasible at low voltages 2x cm -3

Basic charcteristics of the device can deplete charge at low Vg can “deplete” magnetization at low Vg 30% AMR tuneable by low Vg low Vg dependent competition of uniaxial and cubic anisotropies

Magnetization switching by 10ms low-Vg pulses Due to the Vg-dependent Stoner-Wolfarth “diamond” (tuneable uniaxial and cubic anisotropy terms) dR c /dH normalized dR c /dH -1V 3V -1V3V

Single-electron transistor Two "gates": electric and magnetic (Ga,Mn)As spintronic single-electron transistor Huge, gatable, and hysteretic MR Wunderlich et al. PRL ‘06

AMR nature of the effect normal AMR Coulomb blockade AMR

& electric & magnetic control of Coulomb blockade oscillations Q0Q0 Q0Q0 e 2 /2C  [ 010 ]  M [ 110 ] [ 100 ] [ 110 ] [ 010 ] SO-coupling   (M) SourceDrain Gate VGVG VDVD Q Single-electron charging energy controlled by V g and M

CBAMR if change of |  (M)| ~ e 2 /2C CBAMR if change of |  (M)| ~ e 2 /2C  In our (Ga,Mn)As ~ meV (~ 10 Kelvin)In our (Ga,Mn)As ~ meV (~ 10 Kelvin) In room-T ferromagnet change of |  (M)|~100KIn room-T ferromagnet change of |  (M)|~100K Room-T conventional SET (e 2 /2C  >300K) possible Theory confirms chemical potential anisotropies in (Ga,Mn)As & predicts CBAMR in SO-coupled room-T c metal FMs

Variant p- or n-type FET-like transistor in one single nano-sized CBAMR device 0 ON OFF 1 0 ON OFF 1 V DD V A V B V A V B Vout OFF ON OFF ON OFF AB Vout ON OFF ON OFF ON 1 1 OFF 1 “OR” Nonvolatile programmable logic

V DD V A V B V A V B Vout Variant p- or n-type FET-like transistor in one single nano-sized CBAMR device 0 ON OFF 1 0 ON OFF 1 AB Vout “OR” Nonvolatile programmable logic