Soft Computing & Computational Intelligence Biologically inspired computing models Compatible with human expertise/reasoning Intensive numerical computations.

Slides:



Advertisements
Similar presentations
The Software Infrastructure for Electronic Commerce Databases and Data Mining Lecture 4: An Introduction To Data Mining (II) Johannes Gehrke
Advertisements

Presented at the Alabany Chapter of the ASA February 25, 2004 Washinghton DC.
Evolutionary Neural Logic Networks for Breast Cancer Diagnosis A.Tsakonas 1, G. Dounias 2, E.Panourgias 3, G.Panagi 4 1 Aristotle University of Thessaloniki,
Neural Network I Week 7 1. Team Homework Assignment #9 Read pp. 327 – 334 and the Week 7 slide. Design a neural network for XOR (Exclusive OR) Explore.
Data Mining Classification: Alternative Techniques
Final Project- Mining Mushroom World. Agenda Motivation and Background Determine the Data Set (2) 10 DM Methodology steps (19) Conclusion.
Support Vector Machines
Outcomes  Look at the theory of self-organisation.  Other self-organising networks  Look at examples of neural network applications.
Artificial Neural Networks
S-SENCE Signal processing for chemical sensors Martin Holmberg S-SENCE Applied Physics, Department of Physics and Measurement Technology (IFM) Linköping.
Machine Learning: Connectionist McCulloch-Pitts Neuron Perceptrons Multilayer Networks Support Vector Machines Feedback Networks Hopfield Networks.
1 DNA Classifications with Self-Organizing Maps (SOMs) Thanakorn Naenna Mark J. Embrechts Robert A. Bress May 2003 IEEE International Workshop on Soft.
Machine Learning Neural Networks
1 Introduction to Bio-Inspired Models During the last three decades, several efficient machine learning tools have been inspired in biology and nature:
Prénom Nom Document Analysis: Artificial Neural Networks Prof. Rolf Ingold, University of Fribourg Master course, spring semester 2008.
Direct Kernel Methods. Data mining is the process of automatically extracting valid, novel, potentially useful and ultimately comprehensible information.
Artificial Neural Networks Artificial Neural Networks are (among other things) another technique for supervised learning k-Nearest Neighbor Decision Tree.
Data Mining with Neural Networks
Presented at the Alabany Chapter of the ASA February 25, 2004 Washinghton DC.
Analyze/StripMiner ™ Overview To obtain an idiot’s guide type “analyze > readme.txt” Standard Analyze Scripts Predicting on Blind Data PLS (Please Listen.
Detailed q2/Q2 results for 100 bootstraps for final runs with (38 + dummy features)
JYC: CSM17 Bioinformatics Week 9: Simulations #3: Neural Networks biological neurons natural neural networks artificial neural networks applications.
Artificial Intelligence Techniques
NEURAL NETWORKS Introduction
Neural Networks. Background - Neural Networks can be : Biological - Biological models Artificial - Artificial models - Desire to produce artificial systems.
SOMTIME: AN ARTIFICIAL NEURAL NETWORK FOR TOPOLOGICAL AND TEMPORAL CORRELATION FOR SPATIOTEMPORAL PATTERN LEARNING.
Neuro-fuzzy Systems Xinbo Gao School of Electronic Engineering Xidian University 2004,10.
By : Anas Assiri.  Introduction  fraud detection  Immune system  Artificial immune system (AIS)  AISFD  Clonal selection.
Revision Michael J. Watts
CHAPTER 12 ADVANCED INTELLIGENT SYSTEMS © 2005 Prentice Hall, Decision Support Systems and Intelligent Systems, 7th Edition, Turban, Aronson, and Liang.
1 Introduction to Artificial Neural Networks Andrew L. Nelson Visiting Research Faculty University of South Florida.
Neurons, Neural Networks, and Learning 1. Human brain contains a massively interconnected net of (10 billion) neurons (cortical cells) Biological.
Artificial Intelligence Lecture No. 28 Dr. Asad Ali Safi ​ Assistant Professor, Department of Computer Science, COMSATS Institute of Information Technology.
Machine Learning1 Machine Learning: Summary Greg Grudic CSCI-4830.
Using Neural Networks in Database Mining Tino Jimenez CS157B MW 9-10:15 February 19, 2009.
Artificial Neural Nets and AI Connectionism Sub symbolic reasoning.
IE 585 Introduction to Neural Networks. 2 Modeling Continuum Unarticulated Wisdom Articulated Qualitative Models Theoretic (First Principles) Models Empirical.
Chapter 9 Neural Network.
Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos VC 14/15 – TP19 Neural Networks & SVMs Miguel Tavares.
NEURAL NETWORKS FOR DATA MINING
Chapter 7 Neural Networks in Data Mining Automatic Model Building (Machine Learning) Artificial Intelligence.
LINEAR CLASSIFICATION. Biological inspirations  Some numbers…  The human brain contains about 10 billion nerve cells ( neurons )  Each neuron is connected.
Some working definitions…. ‘Data Mining’ and ‘Knowledge Discovery in Databases’ (KDD) are used interchangeably Data mining = –the discovery of interesting,
An informal description of artificial neural networks John MacCormick.
Artificial Neural Networks An Introduction. What is a Neural Network? A human Brain A porpoise brain The brain in a living creature A computer program.
1 Machine Learning 1.Where does machine learning fit in computer science? 2.What is machine learning? 3.Where can machine learning be applied? 4.Should.
Features of Biological Neural Networks 1)Robustness and Fault Tolerance. 2)Flexibility. 3)Ability to deal with variety of Data situations. 4)Collective.
Features of Biological Neural Networks 1)Robustness and Fault Tolerance. 2)Flexibility. 3)Ability to deal with variety of Data situations. 4)Collective.
ROOT ROOT.PAT ROOT.TES (ROOT.WGT) (ROOT.FWT) (ROOT.DBD) MetaNeural ROOT.XXX ROOT.TTT ROOT.TRN (ROOT.DBD) ROOT.WGT ROOT.FWT Use Analyze root –34 for easy.
Neural Networks Presented by M. Abbasi Course lecturer: Dr.Tohidkhah.
Dr.Abeer Mahmoud ARTIFICIAL INTELLIGENCE (CS 461D) Dr. Abeer Mahmoud Computer science Department Princess Nora University Faculty of Computer & Information.
COMP53311 Other Classification Models: Neural Network Prepared by Raymond Wong Some of the notes about Neural Network are borrowed from LW Chan’s notes.
WHAT IS DATA MINING?  The process of automatically extracting useful information from large amounts of data.  Uses traditional data analysis techniques.
COMPUTATIONAL INTELLIGENCE
Neural networks – Hands on
Neural Networks. Background - Neural Networks can be : Biological - Biological models Artificial - Artificial models - Desire to produce artificial systems.
WHAT IS DATA MINING?  The process of automatically extracting useful information from large amounts of data.  Uses traditional data analysis techniques.
“Principles of Soft Computing, 2 nd Edition” by S.N. Sivanandam & SN Deepa Copyright  2011 Wiley India Pvt. Ltd. All rights reserved. CHAPTER 2 ARTIFICIAL.
Business Intelligence and Decision Support Systems (9 th Ed., Prentice Hall) Chapter 6: Artificial Neural Networks for Data Mining.
Intro. ANN & Fuzzy Systems Lecture 3 Basic Definitions of ANN.
Data Mining: Concepts and Techniques1 Prediction Prediction vs. classification Classification predicts categorical class label Prediction predicts continuous-valued.
INTRODUCTION TO NEURAL NETWORKS 2 A new sort of computer What are (everyday) computer systems good at... and not so good at? Good at..Not so good at..
Business Intelligence and Decision Support Systems (9 th Ed., Prentice Hall) Chapter 6: Artificial Neural Networks for Data Mining.
Neural Networks.
Advanced information retreival
Artificial Intelligence (CS 370D)
with Daniel L. Silver, Ph.D. Christian Frey, BBA April 11-12, 2017
SOM to create POVERTY MAP based on various economic indicators by country (by T. Kohonen et al.)
SOM to create POVERTY MAP based on various economic indicators by country (by T. Kohonen et al.)
ARTIFICIAL NEURAL networks.
Presentation transcript:

Soft Computing & Computational Intelligence Biologically inspired computing models Compatible with human expertise/reasoning Intensive numerical computations Data and goal driven Model-free learning Fault tolerant Real world/novel applications

Soft Computing & Computational Intelligence Artificial Neural Networks (ANN) Fuzzy Logic Genetic Algorithms (GAs) Fractals/Chaos Artificial life Wavelets Data mining ANNs FL GAs

Biological Neuron dendrites synapse axon hillock synapse signal flow cell body hair cell (sensory transducer) axon

 weighted sum of the inputs output nonlinear transfer function inputs i1i1 i2i2 i3i3 w1w1 w3w3 w2w2 w1w1 i1i1 + w2w2 i2i2 +w3w3 i3i3 w1w1 i1i1 + w2w2 i2i2 +w3w3 i3i3 o o 1 sigmoid 0 Artificial Neuron

   Molecular weight H-bonding Boiling Point Hydrofobicity Biological response Electrostatic interactions   w 11 w 34   w 23 w 11 h h Neural Network Molecular Descriptor Observable Projection There are many algorithms that can determine the weights for ANNs Neural Net Yields Weights to Map Inputs to Outputs

Neural Networks in a Nutshell A problem can be formulated and represented as a mapping problem from Such a map can be realized by an ANN, which is a framework of basic building blocks of McCulloch-Pitts neurons The neural net can be trained to conform with the map based on samples of the map and will reasonably generalize to new cases it has not encountered before

Neural Network as a Map

Poisonous/Edible Mushroom Classification Problem 1. cap-shape: bell=b,conical=c,convex=x,flat=f,knobbed=k,sunken=s 2. cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s 3. cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r, pink=p,purple=u,red=e,white=w,yellow=y 4. bruises?: bruises=t,no=f 5. odor: almond=a,anise=l,creosote=c,fishy=y,foul=f, musty=m,none=n,pungent=p,spicy=s 6. gill-attachment: attached=a,descending=d,free=f,notched=n 7. gill-spacing: close=c,crowded=w,distant=d 8. gill-size: broad=b,narrow=n 9. gill-color: black=k,brown=n,buff=b,chocolate=h,gray=g, green=r,orange=o,pink=p,purple=u,red=e,white=w,yellow=y 10. stalk-shape: enlarging=e,tapering=t 11. stalk-root: bulbous=b,club=c,cup=u,equal=e,rhizomorphs=z,rooted=r,missing=? 12. stalk-surface-above-ring: ibrous=f,scaly=y,silky=k,smooth=s 13. stalk-surface-below-ring: ibrous=f,scaly=y,silky=k,smooth=s 14. stalk-color-above-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o,pink=p,red=e,white=w,yellow=y 15. stalk-color-below-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o, pink=p,red=e,white=w,yellow=y 16. veil-type: partial=p,universal=u 17. veil-color: brown=n,orange=o,white=w,yellow=y 18. ring-number: none=n,one=o,two=t 19. ring-type: cobwebby=c,evanescent=e,flaring=f,large=l,none=n,pendant=p,sheathing=s,zone=z 20. spore-print-color: black=k,brown=n,buff=b,chocolate=h,green=r,orange=o,purple=u,white=w,yellow=y 21. population: abundant=a,clustered=c,numerous=n,scattered=s,several=v,solitary=y 22. habitat: grasses=g,leaves=l,meadows=m,paths=p,urban=u,waste=w,woods=d Relevant Information: This data set includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family (pp ). Each species is identified as definitely edible, definitely poisonous, or of unknown edibility and not recommended. This latter class was combined with the poisonous one. The Guide clearly states that there is no simple rule for determining the edibility of a mushroom; no rule like ``leaflets three, let it be'' for Poisonous Oak and Ivy. Sources: (a) Mushroom records drawn from The Audubon Society Field Guide to North American Mushrooms (1981). G. H. Lincoff (Pres.), New York: Alfred A. Knopf (b) Donor: Jeff Schlimmer (c) Date: 27 April 1987 Number of Instances: 8124; Number of Attributes: 22 (all nominally valued) Mushroom: original data were alphanumeric. replace alphanumeric attributes in order mentioned by 1, 2, 3 etc

y x 1 x 3 x N  f() w 1 w 2 w 3 w N McCulloch-Pitts Neuron

 f()      x 1 x 2 w 11  w 12  w 13  w 23  w 22  w 11  w 32  w 21  w 11  y First hidden layer Second hidden layer Output neuron Neural Network As Collection of M-P Neurons

Kohonen SOM for text retrieval on WWW newsgroups WEBSOM node u21 Click arrows to move to neighboring nodes on the map. Instructions Re: Fuzzy Neural Net References Needed Derek Long, 27 Oct 1995, Lines: 24. Distributed Neural Processing Jon Mark Twomey, 28 Oct 1995, Lines: 12. Re: neural-fuzzy TiedNBound, 11 Dec 1995, Lines: 10. New neural net C library available Simon Levy, 2 Feb 1996, Lines: 15. Re: New neural net C library available Michael Glover, Sun, 04 Feb 1996, Lines: 25.

From Guido De Boeck SOM’s for Data Mining To be published (Springer Verlag)

database data prospecting and surveying selected data select transformed data preprocess & transform make model Interpretation& rule formulation The Data Mining Process

Santa Fe Time Series Prediction Competition 1994 Santa Fe Institute Competition: 1000 data chaotic laser data, predict next 100 data Competition is described in Time Series Prediction: Forecasting the Future and Understanding the Past, A. S. Weigend & N. A. Gershenfeld, eds., Addison-Wesley, 1994 Method: - K-PLS with  = 3 and 24 latent variables - Used records with 40 past data for training for next point - Predictions bootstrap on each other for 100 real test data Entry “would have won” the competition

UNDERSTANDING WISDOM DATA INFORMATION KNOWLEDGE

Docking Ligands is a Nonlinear Problem

Surface properties are encoded on e/au 3 surface Breneman, C.M. and Rhem, M. [1997] J. Comp. Chem., Vol. 18 (2), p Histograms or wavelet encoded of surface properties give Breneman’s TAE property descriptors 10x16 wavelet descriptore Electron Density-Derived TAE-Wavelet Descriptors PIP (Local Ionization Potential) Histograms Wavelet Coefficients

PLS, K-PLS, SVM, ANN Feature Selection (data strip mining)

Binding affinities to human serum albumin (HSA): log K’hsa Gonzalo Colmenarejo, GalaxoSmithKline J. Med. Chem. 2001, 44, molecules, descriptors 84 training, 10 testing (1 left out) 551 Wavelet + PEST + MOE descriptors Widely different compounds Acknowledgements: Sean Ekins (Concurrent) N. Sukumar (Rensselaer)

Microarray Gene Expression Data for Detecting Leukemia 38 data for training 36 data for testing Challenge: select ~10 out of 6000 genes used sensitivity analysis for feature selection (with Kristin Bennett)

GATCAATGAGGTGGACACCAGAGGCGGGGACTTGTAAATAACACTGGGCTGTAGGAGTGA TGGGGTTCACCTCTAATTCTAAGATGGCTAGATAATGCATCTTTCAGGGTTGTGCTTCTA TCTAGAAGGTAGAGCTGTGGTCGTTCAATAAAAGTCCTCAAGAGGTTGGTTAATACGCAT GTTTAATAGTACAGTATGGTGACTATAGTCAACAATAATTTATTGTACATTTTTAAATAG CTAGAAGAAAAGCATTGGGAAGTTTCCAACATGAAGAAAAGATAAATGGTCAAGGGAATG GATATCCTAATTACCCTGATTTGATCATTATGCATTATATACATGAATCAAAATATCACA CATACCTTCAAACTATGTACAAATATTATATACCAATAAAAAATCATCATCATCATCTCC ATCATCACCACCCTCCTCCTCATCACCACCAGCATCACCACCATCATCACCACCACCATC ATCACCACCACCACTGCCATCATCATCACCACCACTGTGCCATCATCATCACCACCACTG TCATTATCACCACCACCATCATCACCAACACCACTGCCATCGTCATCACCACCACTGTCA TTATCACCACCACCATCACCAACATCACCACCACCATTATCACCACCATCAACACCACCA CCCCCATCATCATCATCACTACTACCATCATTACCAGCACCACCACCACTATCACCACCA CCACCACAATCACCATCACCACTATCATCAACATCATCACTACCACCATCACCAACACCA CCATCATTATCACCACCACCACCATCACCAACATCACCACCATCATCATCACCACCATCA CCAAGACCATCATCATCACCATCACCACCAACATCACCACCATCACCAACACCACCATCA CCACCACCACCACCATCATCACCACCACCACCATCATCATCACCACCACCGCCATCATCA TCGCCACCACCATGACCACCACCATCACAACCATCACCACCATCACAACCACCATCATCA CTATCGCTATCACCACCATCACCATTACCACCACCATTACTACAACCATGACCATCACCA CCATCACCACCACCATCACAACGATCACCATCACAGCCACCATCATCACCACCACCACCA CCACCATCACCATCAAACCATCGGCATTATTATTTTTTTAGAATTTTGTTGGGATTCAGT ATCTGCCAAGATACCCATTCTTAAAACATGAAAAAGCAGCTGACCCTCCTGTGGCCCCCT TTTTGGGCAGTCATTGCAGGACCTCATCCCCAAGCAGCAGCTCTGGTGGCATACAGGCAA CCCACCACCAAGGTAGAGGGTAATTGAGCAGAAAAGCCACTTCCTCCAGCAGTTCCCTGT GATCAATGAGGTGGACACCAGAGGCGGGGACTTGTAAATAACACTGGGCTGTAGGAGTGA TGGGGTTCACCTCTAATTCTAAGATGGCTAGATAATGCATCTTTCAGGGTTGTGCTTCTA TCTAGAAGGTAGAGCTGTGGTCGTTCAATAAAAGTCCTCAAGAGGTTGGTTAATACGCAT GTTTAATAGTACAGTATGGTGACTATAGTCAACAATAATTTATTGTACATTTTTAAATAG CTAGAAGAAAAGCATTGGGAAGTTTCCAACATGAAGAAAAGATAAATGGTCAAGGGAATG GATATCCTAATTACCCTGATTTGATCATTATGCATTATATACATGAATCAAAATATCACA CATACCTTCAAACTATGTACAAATATTATATACCAATAAAAAATCATCATCATCATCTCC ATCATCACCACCCTCCTCCTCATCACCACCAGCATCACCACCATCATCACCACCACCATC ATCACCACCACCACTGCCATCATCATCACCACCACTGTGCCATCATCATCACCACCACTG TCATTATCACCACCACCATCATCACCAACACCACTGCCATCGTCATCACCACCACTGTCA TTATCACCACCACCATCACCAACATCACCACCACCATTATCACCACCATCAACACCACCA CCCCCATCATCATCATCACTACTACCATCATTACCAGCACCACCACCACTATCACCACCA CCACCACAATCACCATCACCACTATCATCAACATCATCACTACCACCATCACCAACACCA CCATCATTATCACCACCACCACCATCACCAACATCACCACCATCATCATCACCACCATCA CCAAGACCATCATCATCACCATCACCACCAACATCACCACCATCACCAACACCACCATCA CCACCACCACCACCATCATCACCACCACCACCATCATCATCACCACCACCGCCATCATCA TCGCCACCACCATGACCACCACCATCACAACCATCACCACCATCACAACCACCATCATCA CTATCGCTATCACCACCATCACCATTACCACCACCATTACTACAACCATGACCATCACCA CCATCACCACCACCATCACAACGATCACCATCACAGCCACCATCATCACCACCACCACCA CCACCATCACCATCAAACCATCGGCATTATTATTTTTTTAGAATTTTGTTGGGATTCAGT ATCTGCCAAGATACCCATTCTTAAAACATGAAAAAGCAGCTGACCCTCCTGTGGCCCCCT TTTTGGGCAGTCATTGCAGGACCTCATCCCCAAGCAGCAGCTCTGGTGGCATACAGGCAA CCCACCACCAAGGTAGAGGGTAATTGAGCAGAAAAGCCACTTCCTCCAGCAGTTCCCTGT WORK IN PROGRESS

Direct Kernel with Robert Bress and Thanakorn Naenna

with Wunmi Osadik and Walker Land (Binghamton University) Acknowledgement: NSF

Magneto-cardiogram Data with Karsten Sternickel (Cardiomag Inc.) and Boleslaw Szymanski (Rensselaer) Acknowledgemnent: NSF SBIR phase I project

Direct Kernel PLS with 3 Latent Variables

SVMLib Linear PCA Direct Kernel PLS SVMLib

Kristin Bennett and Mark Embrechts