Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual-Memory Management.

Slides:



Advertisements
Similar presentations
Module 10: Virtual Memory
Advertisements

Chapter 10: Virtual Memory
Background Virtual memory – separation of user logical memory from physical memory. Only part of the program needs to be in memory for execution. Logical.
Chapter 9: Virtual Memory
Chapter 9 Virtual Memory Bernard Chen 2007 Spring.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 36 Virtual Memory Read.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Lecture 13: Main Memory (Chapter 8)
Virtual Memory Management G. Anuradha Ref:- Galvin.
9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 9: Virtual Memory.
9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual Memory OSC: Chapter 9. Demand Paging Copy-on-Write Page Replacement.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Module 9: Virtual Memory
Module 10: Virtual Memory Background Demand Paging Performance of Demand Paging Page Replacement Page-Replacement Algorithms Allocation of Frames Thrashing.
Chapter 9: Virtual-Memory Management. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 9: Virtual Memory Background Demand Paging.
Virtual Memory Background Demand Paging Performance of Demand Paging
Virtual Memory Introduction to Operating Systems: Module 9.
Instructor: Umar KalimNUST Institute of Information Technology Operating Systems Virtual Memory.
03/26/2010CSCI 315 Operating Systems Design1 Virtual Memory Notice: The slides for this lecture have been largely based on those accompanying an earlier.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
Chapter 10: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 10: Virtual Memory.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
03/22/2004CSCI 315 Operating Systems Design1 Virtual Memory Notice: The slides for this lecture have been largely based on those accompanying the textbook.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
03/17/2008CSCI 315 Operating Systems Design1 Virtual Memory Notice: The slides for this lecture have been largely based on those accompanying the textbook.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
Chapter 9: Virtual Memory. Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel.
Silberschatz, Galvin and Gagne ©2011 Operating System Concepts Essentials – 8 th Edition Chapter 9: Virtual Memory.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel.
CS212: OPERATING SYSTEM Lecture 6: Virtual-Memory Management 1 Computer Science Department.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Background Virtual memory –
Silberschatz, Galvin and Gagne Operating System Concepts Chapter 9: Virtual Memory.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual Memory.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Page Replacement Allocation of.
9.1 Silberschatz, Galvin and Gagne ©2003 Operating System Concepts Chapter 9: Virtual-Memory Management Background Demand Paging Page Replacement Allocation.
Virtual Memory. Background Virtual memory is a technique that allows execution of processes that may not be completely in the physical memory. Virtual.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Outline n Background n Demand.
Operating Systems (CS 340 D) Princess Nora University Faculty of Computer & Information Systems Computer science Department.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 9: Virtual Memory.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9 th Edition Chapter 9: Virtual-Memory Management.
Operating Systems (CS 340 D) Princess Nora University Faculty of Computer & Information Systems Computer science Department.
CS307 Operating Systems Virtual Memory Fan Wu Department of Computer Science and Engineering Shanghai Jiao Tong University Spring 2012.
Silberschatz, Galvin and Gagne  Operating System Concepts Virtual Memory Virtual memory – separation of user logical memory from physical memory.
9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 9: Virtual Memory.
Lecture 19 Virtual Memory Demand Paging. Background Virtual memory – separation of user logical memory from physical memory. –Only part of the program.
Chapter 9: Virtual-Memory Management. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Principles Chapter 9: Virtual-Memory Management 9.1 Background.
9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 9: Virtual Memory.
1 Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples (not covered.
10.1 Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Background Virtual memory – separation of user logical memory.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 9: Virtual Memory.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual-Memory Management.
SLC/VER1.0/OS CONCEPTS/OCT'99
Virtual Memory CSSE 332 Operating Systems
Chapter 9: Virtual Memory – Part I
Chapter 9: Virtual Memory
Chapter 9: Virtual Memory
Module 9: Virtual Memory
Chapter 9: Virtual Memory
Chapter 9: Virtual-Memory Management
5: Virtual Memory Background Demand Paging
Chapter 9: Virtual Memory
Chapter 9: Virtual Memory
Chapter 6 Virtual Memory
Module 9: Virtual Memory
Presentation transcript:

Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual-Memory Management

9.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 9: Virtual-Memory Management Background Demand Paging Page Replacement Allocation of Frames Thrashing

9.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Objectives To describe the benefits of a virtual memory system To explain the concepts of demand paging, page-replacement algorithms, and allocation of page frames

9.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Background Virtual memory – separation of user logical memory from physical memory. Only part of the program needs to be in memory for execution Logical address space can therefore be much larger than physical address space Allows address spaces to be shared by several processes Allows for more efficient process creation Virtual memory can be implemented via: Demand paging Demand segmentation

9.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual Memory That is Larger Than Physical Memory 

9.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual-address Space

9.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Shared Library Using Virtual Memory

9.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Demand Paging Bring a page into memory only when it is needed Less I/O needed Less memory needed Faster response More users Page is needed  reference to it invalid reference  abort not-in-memory  bring to memory Lazy swapper – never swaps a page into memory unless page will be needed Swapper that deals with pages is a pager

9.9 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Transfer of a Paged Memory to Contiguous Disk Space

9.10 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Valid-Invalid Bit With each page table entry a valid–invalid bit is associated (v  in-memory, i  not-in-memory) Initially valid–invalid bit is set to i on all entries Example of a page table snapshot: During address translation, if valid–invalid bit in page table entry is I  page fault v v v v i i i …. Frame #valid-invalid bit page table

9.11 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Page Table When Some Pages Are Not in Main Memory

9.12 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Page Fault If there is a reference to a page, first reference to that page will trap to operating system: page fault 1. Operating system looks at another table to decide: Invalid reference  abort Just not in memory 2. Get empty frame 3. Swap page into frame 4. Reset tables 5. Set validation bit = v 6. Restart the instruction that caused the page fault

9.13 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Steps in Handling a Page Fault

9.14 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Page Replacement What happens if there is no free frame? The solution: Page replacement – find some page in memory, but not really in use, swap it out algorithm performance – want an algorithm which will result in minimum number of page faults Same page may be brought into memory several times

9.15 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Need For Page Replacement

9.16 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Basic Page Replacement 1. Find the location of the desired page on disk 2. Find a free frame: - If there is a free frame, use it - If there is no free frame, use a page replacement algorithm to select a victim frame 3. Bring the desired page into the (newly) free frame; update the page and frame tables 4. Restart the process

9.17 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Page Replacement

9.18 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Thrashing If a process does not have “enough” frames, the page-fault rate is very high. This leads to: low CPU utilization operating system thinks that it needs to increase the degree of multiprogramming another process added to the system Thrashing  a process is busy swapping pages in and out A process is thrashing if it is spending more time paging than executing.

Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, End of Chapter 9