Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory LCFI Status Report: Sensors for the ILC Konstantin Stefanov CCLRC Rutherford Appleton Laboratory.
January US LC Workshop SLAC – Chris Damerell 1 Strategies for pickup and noise suppression with different vertex detector technologies Chris Damerell.
2nd Open Meeting of the SuperKEKB Collaboration, KEK, March 2009 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Sensor R&D and Prototyping - Status -
Kailua-Kona, Marcel Trimpl, Bonn University Readout Concept for Future Pixel Detectors based on Current Mode Signal Processing Marcel Trimpl.
1 Research & Development on SOI Pixel Detector H. Niemiec, T. Klatka, M. Koziel, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor, M. Szelezniak AGH – University.
Readout ASIC Development VERITAS II Garching, 28 January 2014 Matteo Porro.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
Front-end electronics for Time Projection Chamber I.Konorov Outlook:  TPC requirements  TPC readout options  Options for TPC FE chips  Prototype TPC.
R. H. Richter et al - VERTEX 2002 Kailua-Kona, DEPFET sensors for a LC vertex detector (1) »DEP(leted)F(ield)E(ffect)T(ransistor) operation.
Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.
A new idea of the vertex detector for ILC Y. Sugimoto Nov
R&D Status of FPCCD Vertex Detector Dec.1, 2006 Yasuhiro Sugimoto KEK.
Development of Readout ASIC for FPCCD Vertex Detector 01 October 2009 Kennosuke.Itagaki Tohoku University.
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
Performance test of STS demonstrators Anton Lymanets 15 th CBM collaboration meeting, April 12 th, 2010.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
DEPFET Electronics Ivan Peric, Mannheim University.
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.
Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
R. H. Richter - WHI Project Review Dec, 17th 2002 WHI - Project Review Halbleiterlabor (HLL) - Projects at HLL Overview (list of main projects)
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
FPCCD option Yasuhiro Sugimoto 2012/5/24 ILD 1.
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
BTeV Hybrid Pixels David Christian Fermilab July 10, 2006.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
Sensor testing and validation plans for Phase-1 and Ultimate IPHC_HFT 06/15/ LG1.
M. Deveaux, CBM-Collaboration-Meeting, 25 – 28. Feb 2008, GSI-Darmstadt Considerations on the material budget of the CBM Micro Vertex Detector. Outline:
Prague, Marcel Trimpl, Bonn University DEPFET-Readout Concept for TESLA based on Current Mode Signal Processing Markus Schumacher on behalf.
FEE 2006, Perugia, Marcel Trimpl, University of Bonn VIth Workshop on Front End Electronics Perugia, Mai 2006 M.Trimpl DEPFET – collaboration:
MIMO  3 Preliminary Test Results. MIMOSTAR 2 16/05/2007 MimoStar3 Status Evaluation of MimoStar2 chip  Test in Laboratory.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
1 Performance of a CCD tracker at room temperature T. Tsukamoto (Saga Univ.) T. Kuniya, H. Watanabe (Saga Univ.); A. Miyamoto, Y. Sugimoto (KEK); S. Takahashi,
Position Sensitive Detector Conference, September 2005, LiverpoolGerhard Lutz 1 (Semiconductor) Pixel Detectors for charged particles (and other applications)
Infinipix DEPFETs (for the ATHENA project) Seeon, May 2014 Alexander Bähr MPE 1 Alexander Bähr Max-Planck-Institute f. extraterrestr. Physics.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Simulation of a DEPFET Pixel Detector IMPRS Young Scientist Workshop July, 26 – 30, 2010 Christian Koffmane 1,2 1 Max-Planck-Institut für Physik, München.
Hybrid CMOS strip detectors J. Dopke for the ATLAS strip CMOS group UK community meeting on CMOS sensors for particle tracking , Cosenors House,
H. Krüger, , DEPFET Workshop, Heidelberg1 System and DHP Development Module overview Data rates DHP function blocks Module layout Ideas & open questions.
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
1 Test of Electrical Multi-Chip Module for Belle II Pixel Detector DPG-Frühjahrstagung der Teilchenphysik, Wuppertal 2015, T43.1 Belle II Experiment DEPFET.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
ASICs1 Drain Current Digitizer Chip (DCD) Status and Future Plans.
 Silicon Vertex Detector Upgrade for the Belle II Experiment
The DEPFET for the ILC Vertex Detector
Jan Soldat, Heidelberg University for the DSSC ASIC design groups
First Testbeam results
DEPFET Active Pixel Sensors (for the ILC)
The Belle II Vertex Pixel Detector (PXD)
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
FPCCD Vertex Detector for ILC
Presentation transcript:

Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger c, P. Lechner c, I.Peric d, M. Reiche e, R.H. Richter a, G. Schaller a, M. Schnecke a, F. Schopper a, H. Soltau c, L. Strüder a, J. Treis a, M. Trimpl d, J. Ulrici d, N. Wermes d a)MPI Halbleiterlabor Munich, Germany b)University of Mannheim, Germany c)PNSensor gGmbH Munich, Germany d)University of Bonn, Germany e)MPI für Mikrostrukturphysik Halle, Germany

Content Introduction DEPFET principle and properties DEPFET pixel detectors Pixel detector prototypes (for LC and X-ray astronomy) Module concept Steering and readout chip Matrix Test results Power consumption Conclusion

Introduction Requirements for Linear colliders (example: TESLA) –Precise vertexing with low momentum tracks requires: High granularity pixel detectors Low multiple scattering  thin detectors, avoidance of cooling of sensor  low power consumption Limitation of occupancy  sufficiently high readout speed DEPFET pixel detectors are able to fulfill these requirements –Due to particular function principle –Developed and built in own laboratory of the MPI –Electronics and system developed in close collaboration with Universities Bonn and Mannheim

DEPFET principle and properties Function principle –Field effect transistor on top of fully depleted bulk –All charge generated in fully depleted bulk; assembles underneath the transistor channel; steers the transistor current –Clearing by positive pulse on clear electrode –Combined function of sensor and amplifier DEPFET structure and device symbol

DEPFET principle and properties Properties –low capacitance ► low noise –Signal charge remains undisturbed by readout ► repeated readout –Complete clearing of signal charge ► no reset noise –Full sensitivity over whole bulk ► large signal for m.i.p.; X-ray sens. –Thin radiation entrance window on backside ► X-ray sensitivity –Charge collection also in turned off mode ► low power consumption –Measurement at place of generation ► no charge transfer (loss) ► Operation over very large temperature range ► no cooling needed DEPFET structure and device symbol

DEPFET Operation: Energy Resolution Setup:  source follower read out  commercial pre-amp  shaping time 6 μs Result at Room Temperature:  keV  2.2 el. r.m.s. Circular DEPFET out of Prototype DEPFET pixel fabrication run at MPI

DEPFET Pixel Detector Operation Mode Large area covered with DEPFETS Individual transistors or rows of transistors Can be selected for readout All other transistors are turned off Those are still able to collect signal charge Very low power consumption

DEPFET pixel detector prototypes Two projects on same wafer, two different geometries: XEUS (future X-ray observatory): Circular (enclosed) geometry Source readout Linear collider: Rectangular geometry Drain readout

DEPFET Technology at HLL extended: Double poly / double metal process cut perpendicular to channel (with clear) Summary of technology properties 1. Test diodes (fully depleted 450 μm) V dep = V and V I leak = pA/cm 2 V fb = -1 V 2. ILD Quality (Breakdown Voltage) Poly I to Si:V B > 100 V Poly II to Si:V B > 100 V Metal I to Si:V B > 200 V Poly I to Poly II:V B > 20 V p channel implant n+ clear clear gate poly I n internal gate metal I metal II gate poly II deep p implant

Pixel prototype production (6“ wafer) for XEUS and LC (TESLA) Many test arrays - Circular and linear DEPFETS up to 128 x 128 pixels minimum pixel size about 30 x 30 µm² - variety of special test structures Aim: Select design options for an optimized array operation (no charge loss, high gain, low noise, good clear operation) On base of these results => production of full size sensors Structures requiring only one metalization layer Production up to first metal layer finished Test results agree very well with device simulations

The LC sensor matrix  rectangular double pixels (common source)  Depletion type p-channel MOSFETs  linear transistors (small pixels) double pixel cell 33 x 47 µm 2 in DEPFET-Matrix drain gate reset 16x128 DEPFET-Matrix

DEPFET measurements on rectangular test transistors (W = 120µm L = 5µm) Output characteristics: Correct transistor behavior Transfer characteristics: Device can be completely switched off Transistor parameters agree with simulation

Module concept Thin (50µm) DEPFET pixel detector supported by silicon stiffening frame Row selection electronics on long side of frame (Analog) readout electronics at short end Thin detector technology already developed tested with diodes so far to be describe by L. Andricek on Wednesday

Readout row selection chip AMS 0.8µm HV high speed high voltage range (20V) 64 rows=2x64 channels daisy chainable Switcher II: DEPFET Matrix Read Out: ASICs Development at the Universities Bonn and Mannheim 4.6 mm 4.8 mm CURO II: 4.5 mm Fast RO chip for DEPFETs TSMC 0.25µm, 5 metal 128 channels „CUrrent ReadOut“ fast current based memory cells hit identification + zero suppression Correlated double sampling within 40ns

Status readout electronics Not yet designed for low power consumption in waiting period between pulse trains Not yet optimally matched to desired pixel geometry Row selection chip RAM & sequencer tested up to 80 MHz Analog performance ok to 30 MHz Drives signals in range 0 to 20V Power consumption at 50MHz: ~ 400mW / chip with active channel ~ 10mW / chip for others CURO readout chip Digital part, the hit-finder and the current-comparator-block both work with desired speed of 50MHz Analog part (memory cell): speed: 25MHz accuracy: 0.1 % noise : < 30 electrons Power consumption 2 mW/channel

Readout of complete DEPFETmatrix So far only available for XEUS project Different conditions: Source readout 8-fold double correlated sampling Slow readout: 13µs/row 55 Fe source spectrum in logarithmic scale FWHM of Mn-Ka (5.9keV): eV ENC: 11.5 e-

Vertex Detector for Linear Collider sensitive area 1 st layer module: 100x13 mm 2, 2 nd -5 th layer : 125x22 mm 2  ∑120 modules TESLA TDR: TESLA TDR Design close to IP, r = 15 mm (1st layer) pixel size: μm ~0.1% X 0 per layer overall: ~ 1GPixel 5 barrels – stand alone tracking

Module Power consumption during pulse train Thin Detector region (layer 2-5) –Sensor: two active rows 1640x5Vx100µA= 820mW –Switcher: 1 active channel 300mW 4999 passive channels 2500x0.15mW= 375mW –Total in thin detector region during pulse train 1.5W End hybrid region –CURO R/O chip : 820x2 channels x 2mW= 3.3W Readout channels=2xnb.of columns Layer 1:2x512=1024 Layer 2-5: 2x820=1640 Switcher channels=nb.of double rows Layer 1 : 4000/2=2000 Layer 2-5 : 5000/2=2500

Vertex detector power consumption During beam train –In thin detector region 120x 1.5W=180W –In cooled end region 120x 3.3W=400W With electronics power turned off in between trains (TESLA) reduction by factor ~ 1/200 –In thin detector region 180W/200 = 0.9W –In cooled end region 400W/200 = 2.0W

Conclusions DEPFET Pixel detectors use radically different function principle from other pixel detectors Properties are very well suited for LC applications High S/N ratio at large speed and low power consumption can be obtained for thin detectors Detector fabrication is done in own laboratory Development program is well advanced

Performance of Prototype R/O Chip analog part (memory cell): speed: 25MHz accuracy: 0.1 % noise : < 30 electrons digital part: the hit-finder and the current-comparator-block both work with desired speed (50MHz) 0.1% accuracy reached

New Readout concept: CURO  front end: automatic pedestal subtraction (double correlated sampling)  analog currents buffered in FIFO  Hit-Logic performs 0 suppression and multiplexes hits to ADC (ADC only digitizes hits !) CURO : CUrrent Read Out

128 channels – CURO II Features:  TSMC 0.25µm, 5metal  Full blown RO Chip with 128 channels  fast correlated double sampling  produced 11/2003  costs: 30k$ CURO II: 4.5 mm Currently under test

new steering chip AMS 0.8µm HV versatile sequencing chip (internal sequencer  flexible pattern) high speed + high voltage range (20V) drives 64 DEPFET-rows (can be daisy chained) Switcher II: [I.Peric (Bonn) / P.Fischer (Mannheim)] 4.6 mm 4.8 mm

Current based Readout Storage phase: input and sample-switch closed :  gate-capacitance of nmos charged I STORE Transfer phase: output switch closed : (done immediately after sampling)  I STORE is flowing out Sampling phase: input and sample-switch opened :  voltage at capacitance „unchanged“  current unchanged I = I In + I Bias How to store a current ??

CURO - Architecture  front end: automatic pedestal subtraction (double correlated sampling) - easy with currents -  analog currents buffered in FIFO  Hit-Logic performs 0 suppression and multiplexes hits to ADC (ADC only digitizes hits !) CURO : CUrrent Read Out

Estimated Material Budget (1 st layer): Pixel area: 100x13 mm 2, 50 μm : 0.05% X 0 steer. chips: 100x2 mm 2, 50 μm : 0.008% X 0 (massive) Frame :100x4 mm 2, 300 μm : 0.09% X 0 TESLA Vertex Detector: Material Budget perforated frame: 0.05 % X 0 total: 0.11 % X 0 reduce frame material!!!  "support grid"

DEPFET Operation: Amplification  generated electrons are collected in "internal gate" and modulate the transistor current  Signal charge removed via clear contact 2D dynamic simulation of a MOSFET hit response to a generation of 1600 e-h pairs mip prod. 2003: ~0.4 nA/e -

DEPFET Operation: Charge Removal  generated electrons are collected in „internal gate“ and modulate the transistor current  Signal charge removed via "Clear" contact measurement cycle: sample-clear-sample complete "Clear"  no reset noise! clear voltage (V) Source current (μA) complete "Clear" achieved with Vclear >11 V (confirmed by noise measurements)

Background at TESLA High magnetic field to „reduce“ background But still: Rate high ( 80 hits / mm bunchtrain ) One frame per Train: Occupancy 20% !!!!! Simulation : [C.Büssser, DESY]