The ultralight DEPFET Pixel Detector of the Belle II Experiment Florian Lütticke On behalf of the DEPFET Collaboration th.

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

ATLAS SCT Endcap Detector Modules Lutz Feld University of Freiburg for the ATLAS SCT Collaboration Vertex m.
May 14, 2015Pavel Řezníček, IPNP Charles University, Prague1 Tests of ATLAS strip detector modules: beam, source, G4 simulations.
Simulation Studies of a (DEPFET) Vertex Detector for SuperBelle Ariane Frey, Max-Planck-Institut für Physik München Contents: Software framework Simulation.
LHC SPS PS. 46 m 22 m A Toroidal LHC ApparatuS - ATLAS As large as the CERN main bulding.
Module Production for The ATLAS Silicon Tracker (SCT) The SCT requirements: Hermetic lightweight tracker. 4 space-points detection up to pseudo rapidity.
The LHCb Inner Tracker LHCb: is a single-arm forward spectrometer dedicated to B-physics acceptance: (250)mrad: The Outer Tracker: covers the large.
SSD Operations Manual March 2014 SSD: 4 th layer of vertex detector Heavy Flavor Tracker Silicon Strip Detector – Operations Manual PXL Inserted from this.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
SuperKEKB to search for new sources of flavor mixing and CP violation - Introduction - Introduction - Motivation for L= Motivation for L=
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.
Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
Installation and operation of the LHCb Silicon Tracker detector Daniel Esperante (Universidade de Santiago de Compostela) on behalf of the Silicon Tracker.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
Development of TOP counter for Super B factory K. Inami (Nagoya university) 2007/10/ th International Workshop on Ring Imaging Cherenkov Counters.
FPCCD option Yasuhiro Sugimoto 2012/5/24 ILD 1.
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Tsukuba-hall webcam 1 Beam Pipe and Vertex Detector extraction: on Nov. 10, 2010 Belle Detector Roll-out: Dec. 9, 2010 End-caps, CDC, B-ACC, TOF extraction:
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
C. Kiesling, 1st Open Meeting of the SuperKEKB Collaboration, KEK, Dec , The DEPFET-Project: European Collaboration for a Pixel SuperBelle.
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
LHCb Vertex Detector and Beetle Chip
The Belle II DEPFET Pixel Detector
On a eRHIC silicon detector: studies/ideas BNL EIC Task Force Meeting May 16 th 2013 Benedetto Di Ruzza.
Abstract Beam Test of a Large-area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System V. Bhopatkar, M. Hohlmann, M. Phipps, J. Twigger,
Beam Test of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger, A.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
TRACKING AND VERTEXING SUMMARY Suyong Choi Korea University.
Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.
Position Sensitive Detector Conference, September 2005, LiverpoolGerhard Lutz 1 (Semiconductor) Pixel Detectors for charged particles (and other applications)
A New Inner-Layer Silicon Micro- Strip Detector for D0 Alice Bean for the D0 Collaboration University of Kansas CIPANP Puerto Rico.
10 September 2010 Immanuel Gfall (HEPHY Vienna) Belle II SVD Upgrade, Mechanics and Cooling OEPG/FAKT Meeting 2010.
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
Infinipix DEPFETs (for the ATHENA project) Seeon, May 2014 Alexander Bähr MPE 1 Alexander Bähr Max-Planck-Institute f. extraterrestr. Physics.
Laser Measurements (as comparison to test beam data) Florian Lütticke University of Bonn 9 th VXD Belle 2 Workshop Valencia,
H.-G. Moser Max-Planck-Institut für Physik 2nd DEPFET workshop 3-6 May 2009 Open Issues Readout cycle: 10 µs or 20 µs ? Advantages of 20 µs: - smaller.
Simulation of a DEPFET Pixel Detector IMPRS Young Scientist Workshop July, 26 – 30, 2010 Christian Koffmane 1,2 1 Max-Planck-Institut für Physik, München.
H. Krüger, , DEPFET Workshop, Heidelberg1 System and DHP Development Module overview Data rates DHP function blocks Module layout Ideas & open questions.
Test beam preparations Florian Lütticke, Mikhail Lemarenko, Carlos Marinas University of Bonn (Prof. Norbert Wermes) DEPFET workshop Ringberg (June 12-15,
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
1 The Belle II Vertex Pixel Detector IMPRS Young Scientist Workshop July , 2014 Ringberg Castle Kreuth, Germany Felix Mueller.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
Radiation Hardness of DEPFET Pixel Sensors Andreas Ritter IMPRS - Young Scientist Workshop 2010, Ringberg 1.
1 Test of Electrical Multi-Chip Module for Belle II Pixel Detector DPG-Frühjahrstagung der Teilchenphysik, Wuppertal 2015, T43.1 Belle II Experiment DEPFET.
The SuperB Silicon Vertex Tracker Abstract : The SuperB project aims to build an asymmetric e+ - e- collider capable of reaching.
Ysterious apping ess Florian Lütticke On behalf of the test beam crew 20th International Workshop on DEPFET Detectors and.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
PXD ASIC Review, Oct Ladislav Andricek, MPG Halbleiterlabor Belle II PXD Overview (An attempt to describe the) Interfaces between ASICs and the Experiment.
SVD Electronics Constraints
Developing Radiation Hard Silicon for the Vertex Locator
Latest results of EMCM tests / measurements
 Silicon Vertex Detector Upgrade for the Belle II Experiment
IOP HEPP Conference Upgrading the CMS Tracker for SLHC Mark Pesaresi Imperial College, London.
CMOS pixel sensors & PLUME operation principles
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
The Belle II Vertex Pixel Detector (PXD)
Flavour Physics Belle II experiment at SuperKEKB Tsukuba, Japan
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
Vertex Detector Overview Prototypes R&D Plans Summary.
Presentation transcript:

The ultralight DEPFET Pixel Detector of the Belle II Experiment Florian Lütticke On behalf of the DEPFET Collaboration th Vienna Conference on Instrumentation –

Super flavor factory: Physics Motivation SuperKEKB and Belle II DEPFET pixel detector system – Module design – Latest results Overview

Measurement of CKM matrix elements and angles of unitary triangle Observation of direct CP Violation in B decays Measurement of rare decays b->s transitions: probe for new sources of CPV and constraints from the b->sγ branching fraction Forward-backward asymmetry (A fb ) in b->sll as tool for search for physics beyond SM Observation of D mixing Searches for rare τ decays Observation of new hadrons B-Factory detectors – a huge success B 0 tag _ Measure CKM elements as precisely as possible Over constrain unitarity triangle Look for deviations from SM → Need 50 ab -1 Current constraints With 50 ab -1 (same central values)

Asymmetric energy (4 GeV, 7 GeV) e + e - collider at the E cm =m(Υ(4S)) to be realized by upgrading the existing KEKB machine Final luminosity 8·10 35 cm -2 s -1, 40 times higher than the existing KEKB Factory Luminosity: Beam size reduction (nano beam) and higher current KEKB upgrade - SuperKEKB 7 GeV e - 4 GeV e + Belle II

What do we measure? – CP observables Asymmetric beams: Lorentz-boost translates lifetime to decay length HER (e - ), 7 GeV LER (e + ), 4 GeV Precise vertexing essential to measure CP violation

Belle upgrade – Belle II DEPFET Pixels at R = 14 mm and R = 22 mm Double Sided Strips

Vertexing Requirements a (µm)b (µm GeV) LHC1270 STAR1219 Belle II8.510 ILC510 Common vertex detector requirements First layer close to the IP Low material budget Reduced services Low power dissipation High granularity Good spatial resolution Fast readout Radiation hardness The combination of resolution, mass and power is a substantial challenge a: Governs high momentum b: Dominates at low momentum

Belle II Vertex Detector Requirements Occupancy0.4 hits/µm 2 /s Radiation2 Mrad/year 2· MeV n eq per year Frame time20 μs Momentum rangeLow momentum (< 1 GeV) Acceptance17º-155º Material budget0.2% X 0 per layer Resolution15 µm (50x75 µm 2 ) Modest resolution (15 μm), dominated by multiple scattering → Pixel size (50 x 75 μm²) Lowest possible material budget (0.2% X 0 /layer) –Ultra-transparent detectors –Lightweight mechanics and minimal services

DEPFET – DEpleted P-channel Field Effect Transistor Source Drain P-channel Gate Gate-oxide C=C ox W L L W d Top View Side View I d : source-drain current C ox : sheet capacitance of gate oxide W,L: Gate width and length µ: mobility (p-channel: holes) V GS : gate voltage V th : threshold voltage Internal gate e-e- e-e- e-e- e-e- e-e- h h h h h Charge q in the internal gate induces mirror charge  q in the channel (  <1 due to stray capacitance). This mirror charge is compensated by a change of the gate voltage:  V =  q / C =  q / (C ox W L) which in turn changes the transistor current I d. Conversion factor: Transconductance:

DEPFET – DEpleted P-channel Field Effect Transistor Source Drain Gate Gate-oxide C=C ox W L L W d Top View Side View Internal amplification, g q ~ 500 pA/e - Small intrinsic noise Sensitive off state – no power consumption Internal gate Side View – 90°rotated Nondestructive readout Charge needs to be cleared Clear contact attractive for electrons

DEPFET Readout and Matrix Design Current Readout ASIC

The DEPFET Ladder DHP (Data Handling Processor) First data compression TSMC 65 nm Size 4.0  3.2 mm 2 Stores raw data and pedestals Common mode and pedestal correction Data reduction (zero suppression) Timing signal generation 1.6 Gbit/s Highspeed link over 15 m cable Rad. Hard proved (100 Mrad) UMC 180 nm Size 5.0  3.2 mm 2 TIA and ADC Pedestal compensation 20 Gbit/s output data Rad. Hard proved (20 Mrad) SwitcherB Row control AMS HVCMOS 180 nm Size 3.6  1.5 mm 2 Gate and Clear signal Fast HV ramp for Clear Rad. Hard proved (36 Mrad) DCDB (Drain Current Digitizer) Analog frontend

Back End DHH (Data Handling Hybrid) – Electrical - optical interface – Slow control master (JTAG) – Clustering, Slow Pion Rescue ONSEN – Data buffer – Reduction via ROI selection (DATCON, HLT) 15 m cable

PXD9 small Belle II type matrix – Pixel pitch: 50x55 μm 2 – Thinned to 75 μm – Gate length: 5 μm – Thin gate oxide – 32x64 pixels readout – Sampling time 128 ns (80% targeted) Final readout chain – SwitcherB – DCDB – DHPT – DHPT → DHH Hybrid 5 – Full system demonstrator DCDB DHPT Switcher

Drain Current Digitizer (DCD): – Uniformity and linearity of ADCs Data Handling Processor (DHPT): – High speed link settings – Steering sequences – Signal timing Hybrid 5 – ASIC Optimization Eye Diagram after 15m cable Cable Steering Signal Output ADC Transfer curve Output code 100 mV

Optimization of DEPFET voltages – Laser measurements – Source measurements Hybrid 5 – Matrix Optimization Laser focused through microscope ~3 μm spot size Laser moves over matrix – position resolution 90 Sr source triggered g Q ~ 700 pA/e - Signal Dispersion 5%

Hybrid 5 Beam Test e - 4 GeV DEPFET PXD 9 Trigger FE-I4 Tracking Telescope Beam Test Setup

Measured 4 GeV electrons at different incidence angles Checked against Geant4 simulation with DEPFET Clusterizer g q = 740 ± 20 pA/e - measured Hybrid 5 Testbeam Results 0 degree10 degree20 degree 30 degree 45 degree60 degree 18

Position Resolution 30° tilt: many 2 pixel clusters Simulation 12.0µm Beam Test 11.7µm Simulation 8.7µm Beam Test 9.1µm 0° tilt: perp. incidence σ=9.1 µmσ=11.7 µm

PXD 9 Picture 768x250 Pixel 50x75 μm 2 pixel pitch 75 μm thickness Belle II Final Module

PXD 9 Picture 109 Cd

DEPFET Production

Beampipe PXD support rings

Cooling blocks PXD cooling & support structure N 2 capillaries C0 2 capillaries

Inner Layer Inner layer at R = 14 mm 3 layer Kapton cables Data and Power Carbon fibers for cooling Switcher asics

Outer Layer Outer layer at R = 22 mm

Belle II will feature ultra thin DEPFET Pixel sensors Small sensors in latest technology characterized and tested with 4GeV electrons at DESY First large modules successfully produced Full detector to start operation in 2018 Conclusion

28Location - Date Thank you

BACKUP

Location - Date

- Date32

MOSFET

Each DEPFET pixel is a p-channel FET on a completely depleted bulk. Sidewards depletion – Depletion from front and backside simultaneous. – Full depletion needs lower bias voltage than pn structure depletion at same size and has lower detector capacitance. – Potential minimum in the sensor. Depth can be adjusted. – Electrons drift to potential minimum (fast) and then diffuse to n+ contact. Sidewards depletion

A deep n-implant creates a potential minimum for electrons under the gate (internal gate) Charge created in the depleted volume drifts to potential minimum below the DEPFET surface Outer Pixel regions: Drift potential pushes electrons to the pixel center Internal gate directly below the FET channel collects electrons. Readout capacity small DEPFET Charge Collection cut

DEPFET Internal amplification Voltage based readout possible Source follower configuration Less sensitive to threshold variations µs readout time due to line capacitance

Nondestructive readout Charge needs to be cleared Clear contact attractive for electrons – Deep p shields clear contact – High voltage needed for clear to punch trough p well – Clear gate helps form a channel between internal gate and clear DEPFET charge clear cut

„Rolling-Shutter” readout 1.Activate Gate 2.Read out Drain current 3.Activate Clear: remove charge from int. Gate 4.Gate and Clear inactive: next row Final system: 4 rows read out in parallel Row only active when read out – still sensitive all the time. 38 DEPFET Readout and Module design Detection and internal amplification Small intrinsic noise Low power consumption Readout electronic out of acceptance region DCD

Influenced by V cb Can be repeated with more rare decays to check V ub The R(D*) Problem 4,1 Sigma

Off-module Data Flow DHH (Data Handling Hybrid) Electrical - optical interface Slow control master (JTAG) Clustering ONSEN Data buffer Reduction via ROI selection (DATCON, HLT)

Thin DEPFET Sensors Sensor (50 µm) Supporting frame (450 µm) Etched grooves Belle II mechanical sample Thinned sensor (50 µm)Support frameBump bonded chips Use anisotropic etching on bonded wafers to create a thin, self-supporting sensor One material: uniform and small thermal expansion The DEPFET thickness is a free adjustable parameter

PXD6 Prototype Production 8 SOI wafers with 50 μm thin sensors (450 μm handle) Small test matrices with design variations Full size sensors for prototyping 90 steps fabrication process: 9 Implantations 19 Lithographies 2 Poly-layers 2 Alu-layers 1 Copper layer Back side processing 50 µm 450 µm

43 How does a DEPFET work? Source Drain P-channel Gate Gate-oxide; C=C ox W L L W d FET in saturation: I d : source-drain current C ox : sheet capacitance of gate oxide W,L: Gate width and length µ: mobility (p-channel: holes) V g : gate voltage V th : threshold voltage Transconductance: Internal gate A charge q in the internal gate induces a mirror charge  q in the channel (  <1 due to stray capacitance). This mirror charge is compensated by a change of the gate voltage:  V =  q / C =  q / (C ox W L) which in turn changes the transistor current I d. Conversion factor: q

44 How does a DEPFET work? Source Drain Gate Gate-oxide; C=C ox W L L W d Internal gate A charge q in the internal gate induces a mirror charge  q in the channel (  <1 due to stray capacitance). This mirror charge is compensated by a change of the gate voltage:  V =  q / C =  q / (C ox W L) which in turn changes the transistor current I d. q Internal amplification g q ~ 500 pA/e - Small intrinsic noise Sensitive off-state, no power consumption

45 DEPFET Readout and Module design DCD „Rolling-Shutter” readout 1.Activate Gate 2.Read out Drain current 3.Activate Clear: remove charge from int. Gate 4.Gate and Clear inactive: next row Final system: 4 rows read out in parallel Row only active when read out – still sensitive all the time.

Each pixel is a p-channel FET on a completely depleted bulk. A deep n-implant creates a potential minimum for electrons under the gate (internal gate) Signal electrons in the internal gate modulate the transistor current DEPFET – DEpleted Field Effect Transistor Detection and internal amplification Small intrinsic noise Low power consumption