FFAG Accelerators for Radio-Isotopes Production Alessandro G. Ruggiero Brookhaven National Laboratory FFAG 2007, Grenoble, France April 12-17, 2007.

Slides:



Advertisements
Similar presentations
Thomas Roser ICFA HB-2004 Workshop October 18, 2004 Plans for Future Megawatt Facilities Introduction Issues of high intensity beam acceleration Proposals.
Advertisements

Proton / Muon Bunch Numbers, Repetition Rate, RF and Kicker Systems and Inductive Wall Fields for the Rings of a Neutrino Factory G H Rees, RAL.
Ion Accelerator Complex for MEIC January 28, 2010.
Thomas Roser Snowmass 2001 June 30 - July 21, MW AGS proton driver (M.J. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas,
PAMELA Contact Author: CONFORM is an RCUK-funded Basic Technology Programme PAMELA: Concepts Particle Accelerator for MEdicaL Applications K.Peach(JAI,
HIAT 2009, 9 th June, Venice 1 DESIGN STUDY OF MEDICAL CYCLOTRON SCENT300 Mario Maggiore on behalf of R&D Accelerator team Laboratori Nazionali del Sud.
FFAG Concepts and Studies David Neuffer Fermilab.
XXXVIII th Rencontres de Moriond MORIOND WORKSHOP ON Radioactive beams for nuclear physics and neutrino physics Acceleration of RIB using cyclotrons Guido.
FFAG-ERIT Accelerator (NEDO project) 17/04/07 Kota Okabe (Fukui Univ.) for FFAG-DDS group.
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
Proton Driver Status ISIS Accelerator Division John Thomason.
Brookhaven Science Associates U.S. Department of Energy AGS Upgrade and Super Neutrino Beam DOE Annual HEP Program Review April 27-28, 2005 Derek I. Lowenstein.
Simultaneous Delivery of Parallel Proton Beams with the EURISOL Driver
FFAG for next Light Source Alessandro G. Ruggiero Light Source Workshop January 24-26, 2007.
ADSRs and FFAGs Roger Barlow. 7 Jan 2008Workshop on ADSRs and FFAGsSlide 2 The ADSR Accelerator Driven Subcritical Reactor Accelerator Protons ~1 GeV.
Proton Driver: Status and Plans C.R. Prior ASTeC Intense Beams Group, Rutherford Appleton Laboratory.
EDM2001 Workshop May 14-15, 2001 AGS Intensity Upgrade (J.M. Brennan, I. Marneris, T. Roser, A.G. Ruggiero, D. Trbojevic, N. Tsoupas, S.Y. Zhang) Proton.
1 Muon Acceleration and FFAG II Shinji Machida CCLRC/RAL/ASTeC NuFact06 Summer School August 20-21, 2006.
J-PARC Accelerators Masahito Tomizawa KEK Acc. Lab. Outline, Status, Schedule of J-PARC accelerator MR Beam Power Upgrade.
1 Design of Proton Driver for a Neutrino Factory W. T. Weng Brookhaven National Laboratory NuFact Workshop 2006 Irvine, CA, Aug/25, 2006.
June 23, 2005R. Garoby Introduction SPL+PDAC example Elements of comparison Linacs / Synchrotrons LINAC-BASED PROTON DRIVER.
Acceleration of Protons in FFAG with Non-Scaling Lattice and Linear Field Profile Alessandro G. Ruggiero Semi-Annual International 2006 FFAG Workshop November.
J. Alessi RF Structures EBIS Project Technical Review 1/27/05 RF Structures J. Alessi Some general thoughts on what our approach will be.
Heavy Ion Accelerators for RIKEN RI Beam Factory and Upgrade Plans H. Okuno, et. al. (RIKEN Nishina Center) and P. Ostroumov (ANL) Upgrade Injector Low.
Design of an Isochronous FFAG Ring for Acceleration of Muons G.H. Rees RAL, UK.
FFAG Accelerators for Proton Driver Alessandro G. Ruggiero Brookhaven National Laboratory FFAG 2007, Grenoble, France April 12-17, 2007.
Study of Compact Medical FFAG Accelerators - Radial Sector Type - T. Misu, Y. Iwata, A. Sugiura, S. Hojo, N. Miyahara, M. Kanazawa, T. Murakami, and S.
January 5, 2004S. A. Pande - CAT-KEK School on SNS MeV Injector Linac for Indian Spallation Neutron Source S. A. PANDE.
1 FFAG Role as Muon Accelerators Shinji Machida ASTeC/STFC/RAL 15 November, /machida/doc/othertalks/machida_ pdf/machida/doc/othertalks/machida_ pdf.
EBIS ARR Jim Alessi May 4- 7, 2010 Technical Overview.
Electron Model for a 3-10 GeV, NFFAG Proton Driver G H Rees, RAL.
PROTON LINAC FOR INDIAN SNS Vinod Bharadwaj, SLAC (reporting for the Indian SNS Design Team)
STATUS OF BNL SUPER NEUTRINO BEAM PRORAM W. T. Weng Brookhaven National Laboratory NBI2003, KEK November 7-11, 2003.
High-Power Proton Drivers Alessandro G. Ruggiero Brookhaven National Laboratory FFAG 03 KEK International Center Japan, July , 2003.
Proton FFAG Accelerator R&D at BNL Alessandro G. Ruggiero Brookhaven National Laboratory Alessandro G. Ruggiero Brookhaven National Laboratory.
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
Proton Source & Site Layout Keith Gollwitzer Accelerator Division Fermi National Accelerator Laboratory Muon Accelerator Program Review Fermilab, August.
WG2 (Proton FFAG) Summary G.H. Rees. Proton Driver Working Group  Participants: M. Yashimoto, S. Ohnuma, C.R. Prior, G.H. Rees, A.G. Ruggiero  Topics:
Fermilab and Muons Proton Driver (for ν-Factory, μ + -μ - Collider, …) David Neuffer Fermilab.
J-PARC Spin Physics Workshop1 Polarized Proton Acceleration in J-PARC M. Bai Brookhaven National Laboratory.
DTL Option for MEIC Ion Injection Jiquan Guo, Haipeng Wang Jlab 3/30/
THE DESIGN OF THE AGS-BASED PROTON DRIVER FOR NEUTRINO FACTORY W.T. WENG, BNL FFAG WORKSHOP JULY 7-11, 2003 KEK, JAPAN.
High-Power Proton Drivers Alessandro G. Ruggiero Brookhaven National Laboratory FFAG 03 KEK International Center Japan, July , 2003.
Proton Driver / Project X Keith Gollwitzer Fermilab August 30, 2012.
Eric Prebys, FNAL.  We consider motion of particles either through a linear structure or in a circular ring USPAS, Hampton, VA, Jan , 2015 Longitudinal.
FFAG’ J. Pasternak, IC London/RAL Proton acceleration using FFAGs J. Pasternak, Imperial College, London / RAL.
Multi-bunch acceleration in NS-FFAG Takeichiro Yokoi (Oxford University)
NuFACT06 Muon Source at Fermilab David Neuffer Fermilab.
Concept Preliminary Estimations A. Kolomiets Charge to mass ratio1/61/8 Input energy (MeV/u) Output energy (MeV/u)2.5(3.5) Beam.
F D F November 8, 2006Alessandro G. Ruggiero1 of GeV 10-MWatt Proton Driver Target 200-MeV DTL 1.0-GeV FFAG H – Stripping Foil Injection Energy,
Proton Driver Keith Gollwitzer Accelerator Division Fermilab MAP Collaboration Meeting June 20, 2013.
Thomas Roser SPIN 2006 October 3, 2006 A Study of Polarized Proton Acceleration in J-PARC A.U.Luccio, M.Bai, T.Roser Brookhaven National Laboratory, Upton,
ADSR Inst.July 2009 From PAMELA to ADSR, T.Yokoi From PAMELA to ADSR Takeichiro Yokoi (JAI)
F Sergei Nagaitsev (FNAL) Aug Project X ICD2 Briefing.
Neutrino Factory by Zunbeltz, Davide, Margarita, Wolfgang IDS proposal.
FFAG Studies at BNL Alessandro G. Ruggiero Brookhaven National Laboratory FFAG’06 - KURRI, Osaka, Japan - November 6-10, 2006.
PSI, Zurich February 29 – March Session classification : Accelerator Concepts Tuesday, March 1, 2016 Introduction Vyacheslav Yakovlev Fermilab,
Progress in the Multi-Ion Injector Linac Design
Injector Cyclotron for a Medical FFAG
EffiCAS Efficient Facility for Ions at CAS
FFAG Accelerator Proton Driver for Neutrino Factory
Progress towards Pulsed Multi-MW CERN Proton Drivers
Pulsed Ion Linac for EIC
Status of the JLEIC Injector Linac Design
DTL for MEIC Ion Injection
MEIC New Baseline: Part 9
Multi-Ion Injector Linac Design – Progress Summary
Cooling of C6+ ion beam with pulsed electron beam
RF system for MEIC Ion Linac: SRF and Warm Options
Updated MEIC Ion Beam Formation Scheme
Presentation transcript:

FFAG Accelerators for Radio-Isotopes Production Alessandro G. Ruggiero Brookhaven National Laboratory FFAG 2007, Grenoble, France April 12-17, 2007

4/16/2007FFAG Alessandro G. Ruggiero2/18 FFAG for Hadron (proton and HI) Applications Non-Relativistic Velocity  < 1(forget µ and e !) High Power Mode Mwatt Medium Energy range GeV/u High Repetition Rate50 Hz kHz CW Narrow Width10-30 cm Long Drifts> 1 m Strong Focusing(d) FDF (d) Non Isochronous  <<  T RI and EN production Energy Production Pulsed and Continuous Neutron Production Nuclear Waste Transmutation Tritium Production Nuclear Physics (K, π, … mesons) Proton Drivers for Neutrino Factory, -SuperBeams, µ-Colliders No Medical or Lower Energy or Lower Intensity Applications RCS SCL expensive Cyclotron FFAG

4/16/2007FFAG Alessandro G. Ruggiero3/18 Previous Studies AGS-based Facility for RIP following FAIR (T. Roser, Februray 2006) too complicateRCS needed accumulator ring(s)ande-cooling A.G. Ruggiero “AGS-less RIA with FFAG Accelerators”, BNL Internal Report, C-A/AP 238, May 2006 Abstract We have studied the use of Non-Scaling Fixed-Field Alternating-Gradient (FFAG) accelerators for the acceleration of heavy ions to produce radioisotopes and exotic nuclear fragments. We have taken as reference a beam of nuclei of Uranium 238 partially stripped to +28 charge state. A.G. Ruggiero, T. Roser, D. Trbjevic, “A Non-Scaling FFAG for Rare Isotopes Production”, Proceedings of EPAC, Edinburgh, Scotland TUPLS027 Abstract This is a report to demonstrate the use of Non-Scaling Fixed-Field Alternating-Gradient (FFAG) accelerators [1] in acceleration of partially stripped ions of Uranium-238 for Rare Isotopes Production. The following example assumes a beam final energy of 500 MeV/u with an average beam output current of 1 µA-particle and a beam average power of 120 kWatt. P.N. Ostroumov, Phys. Rev. Spec. Topics Acc. and Beams, 5(2002)

4/16/2007FFAG Alessandro G. Ruggiero4/18 Goals of RIA (SCL)Uranium 238 ECR12 keV/uCharge State 30 RFQ168 keV/u Low-  SCL9.3 MeV/u57.5 and 115 MHz Stripper 1 (Lithium Film)Charge State Medium-  SCL80.3 MeV/u172.5 and 345 MHz Stripper 2 (Carbon Wheel)Charge State High-  SCL400 MeV/u805 MHz CW Mode of Operation 4.2µA-particle 400 kWatt Reliable but Expensive Project360 SC Cavities ECR RFQ Low-  Medium-  High-  Section  G = 0.81  G = 0.61  G = 0.49 Stripper 2Stripper 1

4/16/2007FFAG Alessandro G. Ruggiero5/18 FFAG-Scenarios Three possible modes of operation; A. Acceleration with Broadband RF Cavity f rep = 1 kHz B. Pulsed Mode with Harmonic Number Jumpf rep = 10 kHz C. CW Mode with Harmonic Number Jumpf rep = CW Final Energy400 MeV/u Average Power400 kWatt Average Current4.2 µA-particle I.S. Inj. Linac RFQ 15 MeV/u 80 MeV/u 400 MeV/u FFAG-1FFAG µA- particle Charge State 30+ Charge State 90+ Charge State 70+ ±40.3% ±41.4%

4/16/2007FFAG Alessandro G. Ruggiero6/18 A. Acceleration with Broadband RF Cavity FFAG-1 (+70)FFAG-2 (+90) InjectionExtractionInjectionExtraction Circumferencem204 Kinetic EnergyMeV/u  Revol. Freq.MHz Revol.Periodµs h66 RF FrequencyMHz RF Peak VoltageMVolt RF Phasedegrees60 Bunch AreaeV/u-s0.02 Emittance, norm.π mm- mrad 110  sp. ch N ions / pulsex Accel. Periodms No. of Revol Rep. RatekHz11 Ave. CurrentµA-particle RF Beam PowerkWatt turns 18 µA-p IonSource

4/16/2007FFAG Alessandro G. Ruggiero7/18 A. Acceleration with Broadband RF Cavity Revol. Freq µs I.S.4 µA-particle Stored Current1093 µA-particle Injected Turns275 Filling Period1 ms Long Drift1.089 m Short Drift0.130 m F-Length0.301 m D-Length0.602 m No. of Periods80 I.S. Inj. Linac RFQ 15 MeV/u 80 MeV/u 400 MeV/u FFAG-1FFAG-2 Accumulator

4/16/2007FFAG Alessandro G. Ruggiero8/18 Lattice Function along one period Injection Ejection

4/16/2007FFAG Alessandro G. Ruggiero9/18 FFAG heavy ion driver 400 MeV/u, 400 kW, 1 kHz  6.3 x nucleon/pulse = 2.6 x U/pulse = 4.2 p  A (OK for ECR) Use EBIS as space charge neutralized accumulator. Extract pulses for single turn injection. Accelerate multiple charge states. Energy choices:Kinetic EMomentumBetaRev. Frequency (C=153m) Injection Ring 1 10 MeV/u137 MeV/c/u MHz Injection Ring 2 67 MeV/u381 MeV/c/u MHz Extraction400 MeV/u954 MeV/c/u MHz Ring 1: U 28+ ; B  max = 9.2 Tm  B ~ 0.8 T for 50% filling factor; 1ms acc. time  500 turn acceleration  2 MeV/turn  40 keV/m for 50 m rf  broadband Finemet cavities? Ring 2: U 56+ ; B  max = 12.2 Tm  B ~ 1.0 T for 50% filling factor; 1ms acc. time  1000 turn acceleration  3 MeV/turn  60 keV/m for 50 m rf  broadband Finemet cavities? 10 MeV/n To target station and fast fragment spectrometer 67 MeV/n400 MeV/nECREBISRFQLinacStripperU 28+ U 56+ Ring 1Ring 2 Thomas Roser

4/16/2007FFAG Alessandro G. Ruggiero10/18 B. Acceleration with Harmonic Number Jump FFAG-1 (+70)FFAG-2 (+90) InjectionExtractionInjectionExtraction Circumferencem204 Kinetic EnergyMeV/u  Revol. Freq.MHz Revol.Periodµs h388 x 8176 x 8352 x 4192 x 4 RF FrequencyMHz RF Peak VoltageMVolt2 x (8 x 4) cavities1 x (4 x 8) cavities RF Phasedegrees3060 Bunch AreaeV/u-µs10 Emittance, norm.π mm- mrad 100  sp. ch N ions / pulsex Accel. Periodµs No. of Revol.26 +4/840 Rep. RatekHz10 Ave. CurrentµA-particle RF Beam PowerkWatt turns 75 µA-p Ion Src

4/16/2007FFAG Alessandro G. Ruggiero11/18 Constant-RF Voltage Profile (805 MHz) Using these RF Voltage Profiles it is possible to operate in CW mode provided that the Ion Source delivers continuously 4.2 µA-particles. Ratio of Initial to Final Harmonic Number =  f /  i = 4.04 FFAG-2FFAG-1

4/16/2007FFAG Alessandro G. Ruggiero12/18 CW Mode of Operation (  < 1) UraniumMass Number, A = 238 Charge State, Q = +90 Rest Energy, E 0 = 931.?? MeV/u Kinetic Energy, E = 400 keV/u Average Power, P = 400 kWatt Average Current, I = P/AE = 4.2 µA-ion M equally-spaced cavities around ring at constant frequency f RF and phase  RF Energy Gain  E n = (Q/A) eV n sin  RF f RF = constant =  n h n f ∞ -->  n+1 h n+1 =  n h n f ∞ = C / c  T / T =  C / C –  /   C / C <<  /  = 0, Isochronous TnTn T n + 1 T n - 1 VnVn V n + 1 V n - 1 ECR Cyclotron, MuonsProtons,  < 1

4/16/2007FFAG Alessandro G. Ruggiero13/18 Harmonic Number Jump (HNJ) The variation of h with  can be calculated precisely on a computer, but here we use a linear approximation ( a very good one indeed!)  E n+1 = E 0  n 2  n 3  h / (1 –  p  n 2 ) h n  h = h n+1 – h n = (Q/A) eV n sin  RF  h n is local value between cavity crossings  h is harmonic number jump between cavity crossings = –1  p  n 2 << 1 By integration Max. energy gain per crossing  E max = E f  f  f 2  h M c / f RF C tot Number of Crossingsn f = f RF C tot (1 –  i /  f ) / M  i c  h Acceleration Periodt f = f RF C tot 2 (1 –  i 2 /  f 2 ) / 2 M 2  i 2 c 2  h V n = g  n TTF (  0 /  n ) Cavity gap g = RF  0 / 2 Physical Review ST A&B 9, (2006)

4/16/2007FFAG Alessandro G. Ruggiero14/18 Consequences of Harmonic-Number Jump To avoid beam losses, the number of bunches ought to be less than the harmonic number at all time. On the other end, because of the change of the revolution period, the number of RF buckets will vary. There is a difference between the case of acceleration below and above transition energy. Below transition energy the beam extension at injection ought to be shorter than the revolution period. That is, the number of injected bunches cannot be larger than the RF harmonic number at extraction. The situation is different when the beam is injected above the transition energy. In this case the revolution period decreases and the harmonic number increases during acceleration. Below TransitionAbove Transition h f / h i =  f /  i

4/16/2007FFAG Alessandro G. Ruggiero15/18 Beam-Bunch Time Structure FFAG-1FFAG-2 Cavity Groups84 Cavities per Group48  Cavity Gap, cm RF Phase30 o 60 o RF Voltage / Cavity2 MVolt1 MVolt Orbit Separation, mm Beam rms Width, mm Beam rms Height, mm ECR Ion Source 4.2 µA-ion T final T initial Bunching Freq. = 57 MHz (1 bunch / 14 rf buckets)

4/16/2007FFAG Alessandro G. Ruggiero16/18 C. CW Mode of Acceleration by HNJ FFAG-1 (+70)FFAG-2 (+90) InjectionExtractionInjectionExtraction Circumferencem204 Kinetic EnergyMeV/u  Revol. Freq.MHz Revol.Periodµs h388 x 8176 x 8352 x 4192 x 4 hh RF FrequencyMHz RF Peak VoltageMVolt2 x (8 x 4) cavities1 x (4 x 8) cavities RF Phasedegrees3060 Bunch AreaeV/u-µs10 Emittance, norm.π mm- mrad 10 N ions / turnx Accel. Periodµs No. of Revol.26 +4/840 Rep. RateCW

4/16/2007FFAG Alessandro G. Ruggiero17/18 Energy Gain Profile FFAG-1FFAG-2

4/16/2007FFAG Alessandro G. Ruggiero18/18 RF Voltage Cavity Profile for HNJ cm TM 11 TM 01 TM MHz Gap =4-9 cm 8 MV/m ± 3 MV/m 20 cm 1 m