Ch 8 實習.

Slides:



Advertisements
Similar presentations
Outline Abstract Introduction Methodology Results.
Advertisements

Cell Size Regulation in Bacteria Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA Ariel Amir.
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
Ch05 點估計與抽樣分配 授課老師 薛欣達. 學習目標 估計母體參數的樣本統計量 應用中央極限定理 根據估計式的需求性質判斷估計式的好壞 應用自由度的概念 利用樣板計算抽樣分配與相關的結果.
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
Advanced Chemical Engineering Thermodynamics
Chapter 2 Random Vectors 與他們之間的性質 (Random vectors and their properties)
Reference, primitive, call by XXX 必也正名乎 誌謝 : 部份文字取於前輩 TAHO 的文章.
1 Advanced Chemical Engineering Thermodynamics Appendix BK The Generalized van der Waals Partition Function.
Review of Chapter 3 - 已學過的 rules( 回顧 )- 朝陽科技大學 資訊管理系 李麗華 教授.
: OPENING DOORS ? 題組: Problem Set Archive with Online Judge 題號: 10606: OPENING DOORS 解題者:侯沛彣 解題日期: 2006 年 6 月 11 日 題意: - 某間學校有 N 個學生,每個學生都有自己的衣物櫃.
Section 2.3 Least-Squares Regression 最小平方迴歸
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
第 4 章 迴歸的同步推論與其他主題.
1 政大公企中心產業人才投資課程 -- 企業決策分析方法 -- 黃智聰 政大公企中心產業人才投資課程 課程名稱:企業決策分析方法 授課老師:黃智聰 授課內容:利用分公司之追蹤資料進行企業決策分析 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge,
STAT0_corr1 二變數的相關性  變數之間的關係是統計研究上的一大目標  討論二分類變數的相關性,以列聯表來表示  討論二連續隨機變數時,可以作 x-y 散佈圖觀察它 們的關係強度  以相關係數來代表二者關係的強度.
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
Chapter 9 Hypothesis tests with the t statistic. 當母體  為未知時 ( 我們通常不知 ) ,用樣本 s 來取代 因為用 s 來估計  ,所呈現出來的分佈已不 是 z distribution ,而是 t distribution.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
基礎物理總論 基礎物理總論 熱力學與統計力學(三) Statistical Mechanics 東海大學物理系 施奇廷.
Young/Freeman University Physics 11e. Ch 18 Thermal Properties of Matter © 2005 Pearson Education.
1 CH 13- 規格、公差與可靠度  一定性、不一定性和可靠性  誤差、常態分配和品質規格  組合公差.
1 政治大學東亞所選修 -- 計量分析與中國大陸研究黃智聰 政治大學東亞所選修 課程名稱:計量分析與中國大陸研究 (量化分析) 授課老師:黃智聰 授課內容:時間序列與橫斷面資料的共用 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001),
Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih.
1 Part IC. Descriptive Statistics Multivariate Statistics ( 多變量統計 ) Focus: Multiple Regression ( 多元迴歸、複迴歸 ) Spring 2007.
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
信度.
1 第四章 多變數函數的微分學 § 4.1 偏導數定義 定義 極限值 ■. 2 定理 極限值的基本定理 (1) 極限值的唯一性 : 若 存在,則 其值必為唯一。 (2) 若 且 ( 與 為常數 ) , 則 且 為常數且.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
1 Review II: Sampling & Quantitative Data Collection Social Research Methods Soc 2113 & 6501 Spring, 2007 March 5, 7, 2007.
Chapter 6 Continuous Random Variables and Probability Distributions
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
: Problem A : MiniMice ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11411: Problem A : MiniMice 解題者:李重儀 解題日期: 2008 年 9 月 3 日 題意:簡單的說,題目中每一隻老鼠有一個編號.
Analysis of Variance (ANOVA) CH 13 變異數分析. What is ANOVA? n 檢定 3 個或 3 個以上的母體平均數是否相等的統計檢定 n 檢定多個母體平均數是否相同 n 比較大二、大三、大四學生實習滿意度是否一樣 ? ( 來 自相同的 population)
第七章 連續機率分配.
資料結構實習-一 參數傳遞.
政治大學公企中心必修課-- 社會科學研究方法(量化分析)--黃智聰
觀測量的權 權的觀念與計算.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Chapter 10 m-way 搜尋樹與B-Tree
Kinetic Model of Gases Section 1.9, Assumptions A gas consists of molecules in ceaseless random motion The size of the molecules is negligible in.
C7_prob_2 1 Chap 7 機率論 隨機變數 (random variable) :一群數量的 代表,它們的值是由機會決定的,通常以 大寫英文字母表示 隨機變數分為離散型與連續型兩種。 機率分布 (probability distribution) : 描述 隨機變數值的機率變化 離散型變數的分布直接以.
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
Chapter 7 Sampling Distribution
Continuous Probability Distributions Chapter 會計資訊系統計學 ( 一 ) 上課投影片 Continuous Probability Distributions §Unlike a discrete random variable.
Chapter 6 Probability & The Normal Distribution
Chapter 6 Introduction to Inference 推論簡介. Chapter 6 Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Making Sense.
連續隨機變數 連續變數:時間、分數、重量、……
第八章 估計.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 6-1 Chapter 6 The Normal Distribution and Other Continuous Distributions Basic Business.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
:Rings and Glue ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10301: Rings and Glue 解題者:施博修 解題日期: 2011 年 5 月 18 日 題意:小約翰有了個大麻煩,他不小心將 rings.
財務管理概論 劉亞秋‧薛立言 合著 (東華書局, 2007)
CH 14-可靠度工程之數學基礎 探討重點 失效時間之機率分配 指數模式之可靠度工程.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
1 Chapter 6 利率的風險 與期間結構. 2 前 言 本章將探討: 不同利率之間相互的關係以展現利率的全貌 影響利率波動的來源與導因 利率的風險結構 利率的期間結構.
Chapter 4 Continuous Random Variables and Probability Distributions
Chapter 4-1 Continuous Random Variables 主講人 : 虞台文.
Chapter 4-2 Continuous Random Variables 主講人 : 虞台文.
Chapter 5 Expectations 主講人 : 虞台文. Content Introduction Expectation of a Function of a Random Variable Expectation of Functions of Multiple Random Variables.
1 Continuous Probability Distributions Chapter 8.
Ch 7 實習. Jia-Ying Chen2 Random Variables and Probability Distributions A random variable is a function or rule that assigns a numerical value to each.
Ch 7 & 8 實習. Jia-Ying Chen2 Random Variables and Probability Distributions A random variable is a function or rule that assigns a numerical value to each.
統計計算與模擬 政治大學統計系余清祥 2004 年 3 月 15~24 日 第五、六週: 隨機變數模擬
Continuous Probability Distributions
Handout Ch 5.
Chapter 4-1 Continuous Random Variables
Presentation transcript:

Ch 8 實習

Continuous Probability Distributions A continuous random variable has an uncountably infinite number of values in the interval (a,b). The probability that a continuous variable X will assume any particular value is zero. Why? The probability of each value 1/4 + 1/4 + 1/4 + 1/4 = 1 1/3 + 1/3 + 1/3 = 1 1/2 + 1/2 = 1 1/2 1 1/3 2/3 Jia-Ying Chen

Continuous Probability Distributions As the number of values increases the probability of each value decreases. This is so because the sum of all the probabilities remains 1. When the number of values approaches infinity (because X is continuous) the probability of each value approaches 0. The probability of each value 1/4 + 1/4 + 1/4 + 1/4 = 1 1/3 + 1/3 + 1/3 = 1 1/2 + 1/2 = 1 1/2 1 1/3 2/3 Jia-Ying Chen

Probability Density Function To calculate probabilities we define a probability density function f(x). The density function satisfies the following conditions f(x) is non-negative, The total area under the curve representing f(x) equals 1. Area = 1 P(x1<=X<=x2) x1 x2 The probability that X falls between x1 and x2 is found by calculating the area under the graph of f(x) between x1 and x2. Jia-Ying Chen

Uniform Distribution A random variable X is said to be uniformly distributed if its density function is The expected value and the variance are Jia-Ying Chen

Example 1 The weekly output of a steel mill is a uniformly distributed random variable that lies between 110 and 175 metric tons. a. Compute the probability that the steel mill will produce more than 150 metric tons next week. b. Deter the probability that the steel mill will produce between 120 and 160 metric tons next week. Jia-Ying Chen

Solution f(x) = ,110 ≦ x ≦ 175 a. P(X ≧ 150) = = 0.3846 b. P(120 ≦ X ≦ 160) = = 0.6154 Jia-Ying Chen

Example 2 The following function is the density function for the random variable X: f(x)=(x-1)/8, 1≦x ≦ 5 a. Graph the density function b. Find the probability that X lies between 2 and 4 c. What is the probability that X is less than 3? Jia-Ying Chen

Solution a. b. P(2 < X < 4) = P(X < 4) – P(X < 2) = (.5)(3/8)(4–1) – (.5)(1/8)(2–1) = .5625 – .0625 = .5 c P(X < 3) = (.5)(2/8)(3–1) = .25 f(x) 4/8 1 5 x Jia-Ying Chen

Normal Distribution A random variable X with mean m and variance s2 is normally distributed if its probability density function is given by Jia-Ying Chen

Finding Normal Probabilities Two facts help calculate normal probabilities: The normal distribution is symmetrical. Any normal distribution can be transformed into a specific normal distribution called… “Standard Normal Distribution” Example: The amount of time it takes to assemble a computer is normally distributed, with a mean of 50 minutes and a standard deviation of 10 minutes. What is the probability that a computer is assembled in a time between 45 and 60 minutes? Jia-Ying Chen

Finding Normal Probabilities Solution If X denotes the assembly time of a computer, we seek the probability P(45 ≦ X ≦ 60). This probability can be calculated by creating a new normal variable the standard normal variable. Every normal variable with some m and s, can be transformed into this Z. Therefore, once probabilities for Z are calculated, probabilities of any normal variable can be found. E(Z) = m = 0 V(Z) = s2 = 1 Jia-Ying Chen

Finding Normal Probabilities Example - continued 45 - 50 X - m 60 - 50 P(45 ≦ X ≦ 60) = P( ≦ ≦ ) 10 s 10 = P(-0.5 ≦ Z ≦ 1) To complete the calculation we need to compute the probability under the standard normal distribution Jia-Ying Chen

Jia-Ying Chen

Finding Normal Probabilities Example - continued 45 - 50 X - m 60 - 50 P(45 ≦ X ≦ 60) = P( ≦ ≦ ) 10 s 10 = P(-.5 ≦ Z ≦ 1)=(0.8413-0.5)+(0.6915-0.5)=0.5328 We need to find the shaded area z0 = 1 z0 = -.5 Jia-Ying Chen

Example 3 X is normally distributed with mean 300 and standard deviation 40. What value of X does only the top 15 % exceed? Solution P(0 < Z < ) = 1-0.15 = 0.85 = 1.04; Jia-Ying Chen

Example 4 The long-distance calls made by the employees of a company are normally distributed with a mean of 7.2 minutes and a standard deviation of 1.9 minutes. Find the probability that a call a. Last between 5 and 10 minutes b. Last more than 7 minutes c. Last less than 4 minutes Jia-Ying Chen

Solution a. P(5 < X < 10) = = P(–1.16 < Z < 1.47) = 0.9292-(1-0.8770) = .8062 b. P(X > 7) = = P(Z > –.11) = 0.5438 c. P(X < 4) = =1-0.9535= .0465 Jia-Ying Chen

Exponential Distribution The exponential distribution can be used to model the length of time between telephone calls the length of time between arrivals at a service station the life-time of electronic components. When the number of occurrences of an event follows the Poisson distribution, the time between occurrences follows the exponential distribution. Jia-Ying Chen

Exponential Distribution A random variable is exponentially distributed if its probability density function is given by E(X) = 1/l; V(X) = (1/l)2 Finding exponential probabilities is relatively easy: P(X > a) = e–la. P(X < a) = 1 – e –la P(a1 < X < a2) = e – l(a1) – e – l(a2) Jia-Ying Chen

Exponential Distribution Exponential distribution for l = .5, 1, 2 f(x) = 2e-2x f(x) = 1e-1x f(x) = .5e-.5x 0 1 2 3 4 5 Jia-Ying Chen

Exponential Distribution Example The service rate at a supermarket checkout is 6 customers per hour. If the service time is exponential, find the following probabilities: A service is completed in 5 minutes, A customer leaves the counter more than 10 minutes after arriving A service is completed between 5 and 8 minutes. Jia-Ying Chen

Exponential Distribution Solution A service rate of 6 per hour = A service rate of .1 per minute (l = .1/minute). P(X < 5) = 1-e-lx = 1 – e-.1(5) = .3935 P(X >10) = e-lx = e-.1(10) = .3679 P(5 < X < 8) = e-.1(5) – e-.1(8) = .1572 Jia-Ying Chen

Example 5 Cars arrive randomly and independently to a tollbooth at an average of 360 cars per hour. Use the exponential distribution to find the probability that the next car will not arrive within half a minute. What is the probability that no car will arrive within the next half minute? Jia-Ying Chen

Solution Let X denote the time (in minutes) that elapses before the next car arrives. X is exponentially distributed with l = 360/60 = 6 cars per minute. P(X>.5) = e-6(.5) = .0498. Jia-Ying Chen

Solution If Y counts the number of cars that will arrive in the next half minute, then Y is a Poisson variable with m = (.5)(6) = 3 cars per half a minute. P(Y = 0) = e-3(30)/0! = .0498. Comment: If the first car will not arrive within the next half a minute then no car will arrives within the next half minute. Therefore, not surprisingly, the probability found here is the exact same probability found in the previous question. Jia-Ying Chen

t分配 t分配是一個理論上的機率分配,他是對稱的並且為一個鍾型分配(bell-shaped),並且相似於常態分配的曲線;不同的是他是依著自由度(df)來改變分配的形狀 t分配和常態分配看起來非常的相似 當df越大時,t分配會越接近常態分配(μ=0 σ=1) 常態分配其實是t分配的的一個特例,當df=∞,t分配就是常態分配 實際的例子上,只要df=30,t分配就已經很接近常態分配。 Jia-Ying Chen

t分配 Jia-Ying Chen

Jia-Ying Chen

分配 卡方分配的性質 卡方分配當自由度增加而逐漸對稱,當自由度趨近於無窮大時,卡方分配會趨近於常態分配。 卡方分配為一定義在大於等於0(正數)範圍的右偏分配,不同的自由度決定不同的卡方分配。 卡方分配只有一個參數即自由度,表為v。卡方分配的平均數與變異數為: 卡方分配當自由度增加而逐漸對稱,當自由度趨近於無窮大時,卡方分配會趨近於常態分配。 Jia-Ying Chen

卡方分配 Jia-Ying Chen

卡方值 Jia-Ying Chen

F分配 F有兩個自由度(v1,v2) F之倒數1/F亦為F分佈:分子與分母自由度互換 Jia-Ying Chen

F 分配表(α=0.05) Jia-Ying Chen