INIITIAL POINTS: –LNGS muon Angular Distribution / MACRO / - [1] –Cylindrical symmetry PMT placement Muon Energy – 17.5 GeV Optical Photon Energy – 2–5.

Slides:



Advertisements
Similar presentations
SNOLAB and EXO David Sinclair SNOLAB Workshop August 2005.
Advertisements

Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
for Fusion Power Monitoring
Basic Principles of X-ray Source Detection Or Who Stole All Our Photons?.....
Cut off more slowly ~ 50GeV Thompson astro-ph/ Credit: A.K. Harding (NASA/GSFC) Our first target: Crab pulsar/nebula The standard candle for gamma-ray.
A Muon Veto for the Ultra-Cold Neutron Asymmetry Experiment Vince Bagnulo LANL Symposium 2006 Outline ● UCNA Experiment ● Muon background ● Proposed Veto.
Activity for the Gerda-specific part Description of the Gerda setup including shielding (water tank, Cu tank, liquid Nitrogen), crystals array and kapton.
Alternative Prototype Detector Design D. Reyna Argonne National Lab.
Review of PID simulation & reconstruction in G4MICE Yordan Karadzhov Sofia university “St. Kliment Ohridski” Content : 1 TOF 2 Cerenkov.
Another Conceptional Design of Veto Daya Bay Phone Meeting Changgen Yang 2006/03/01.
Sensitivities (preliminary plots for your eyes only)
Energy Reconstruction Algorithms for the ANTARES Neutrino Telescope J.D. Zornoza 1, A. Romeyer 2, R. Bruijn 3 on Behalf of the ANTARES Collaboration 1.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Lens ALens B Avg. Angular Resolution Best Angular Resolution (deg) Worst Angular Resolution (deg) Image Surface Area (mm 2 )
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
Special Issues on Neutrino Telescopy Apostolos G. Tsirigotis Hellenic Open University School of Science & Technology Particle and Astroparticle Physics.
The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 Shibata Lab 11R50047 Jennifer Newsham YSEP.
The HyCal Calorimeter A. Gasparian NC A&T State University, Greensboro, NC Outline  The crystal modules  The frame and transporter  Temperature stability.
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
Modelling of Electron Air Showers and Cherenkov Light A.Mishev J. Stamenov Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences.
Activity report of TG10 L. Pandola (LNGS) for the TG10 group Gerda Collaboration Meeting, February 3-5, 2005 (simulations and background studies)
In this introductory analysis the above geometry is considered. The taper in the tank, the Benthosphere and Si gell is ignored. The target medium is water.
Special Issues on Neutrino Telescopy Apostolos G. Tsirigotis Hellenic Open University School of Science & Technology Particle and Astroparticle Physics.
EAS Reconstruction with Cerenkov Photons Shower Simulation Reconstruction Algorithm Toy MC Study Two Detector Configuration Summary M.Z. Wang and C.C.
Ronald Bruijn – 10 th APP Symposium Antares results and status Ronald Bruijn.
Cherenkov Counters for SoLID Z.-E. Meziani on behalf of Simona Malace & Haiyan Gao (Duke University) Eric Fuchey (Temple University) SoLID Dry Run Review,
Water Tank as the Outer Muon Veto Mingjun Chen
Gus Sinnis Asilomar Meeting 11/16/2003 The Next Generation All-Sky VHE Gamma-Ray Telescope.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
1 水质契仑科夫探测器中的中子识别 张海兵 清华大学 , 南京 First Study of Neutron Tagging with a Water Cherenkov Detector.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
HBD Gas and QE Monitoring Craig Woody BNL HBD Working Group Meeting October 19, 2005.
Detection of electromagnetic showers along muon tracks Salvatore Mangano (IFIC)
What is MaGe? MJ outputGERDA output MaGe is a Monte Carlo simulation package dedicated to experiments searching for 0 2  decay in 76 Ge. Created by the.
Data Processing for the Sudbury Neutrino Observatory Aksel Hallin Queen’s, October 2006.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
MaGe framework for Monte Carlo simulations MaGe is a Geant4-based Monte Carlo simulation package dedicated to experiments searching for 0 2  decay of.
R. Coniglione, VLVnT08, Toulon April ‘08 KM3NeT: optimization studies for a cubic kilometer neutrino detector R. Coniglione P. Sapienza Istituto.
6-Aug-02Itzhak Tserruya PHENIX Upgrade mini-Workshop1 Boris Khachaturov, Alexander Kozlov, Ilia Ravinovich and Itzhak Tserruya Weizmann Institute, Israel.
Cracow Epiphany Conference on Physics in Underground Laboratories and its Connection with LHC Cracow, Poland The GERDA Experiment at Gran.
Test beam preliminary results D. Di Filippo, P. Massarotti, T. Spadaro.
A Future All-Sky High Duty Cycle VHE Gamma Ray Detector Gus Sinnis/Los Alamos with A. Smith/UMd J. McEnery/GSFC.
Jun Cao Jan. 18, 2004 Daya Bay neutrino experiment workshop (Beijing) Detector Module Simulation and Baseline Optimization ● Determine module geometric.
1/27/2016Katsushi Arisaka 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka XAX 10.
Sebastian Kuch, Rezo Shanidze Summary of the Detector Simulation Studies in Erlangen KM3NeT Collaboration Meeting Pylos, Greece, April 2007.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
KM 3 Neutrino Telescope European deep-sea research infrastructure DANS – symposium Maarten de Jong.
1 Muon Veto System and Expected Backgrounds at Dayabay Hongshan (Kevin) Zhang, BNL DayaBay Collaboration DNP08, Oakland.
PMT measurements in Antares Oleg Kalekin on behalf of Antares collaboration VLVnT 2011 Erlangen
Measurements of low mass e + e - pairs in p+p and Au+Au collisions with the HBD upgrade of the PHENIX detector Mihael Makek Weizmann Institute of Science.
A. Tsirigotis Hellenic Open University N eutrino E xtended S ubmarine T elescope with O ceanographic R esearch Reconstruction, Background Rejection Tools.
MC study of TREND Ground array Feng Zhaoyang Institute of High Energy Physics,CAS
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
Geant4 Simulation for KM3 Georgios Stavropoulos NESTOR Institute WP2 meeting, Paris December 2008.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
Observation Gamma rays from neutral current quasi-elastic in the T2K experiment Huang Kunxian for half of T2K collaboration Mar. 24, Univ.
SIMULATION OF BACKGROUND REDUCTION TECHNIQUES FOR Ge DBD DETECTORS Héctor Gómez Maluenda. University of Zaragoza. GERDA/Majorana MC Meeting.
Double Chooz Experiment Status Jelena Maricic, Drexel University (for the Double Chooz Collaboration) September, 27 th, SNAC11.
“Separation of cosmic-ray components in a single water Cherenkov detector" Yasser Jerónimo, Luis Villaseñor IFM-UMSNH X Mexican School of Particles and.
Rayleigh scattering measurement for Super-Kamiokande Gd project Ryosuke AKUTSU, Institute for Cosmic Ray Research, Univ. of Tokyo / NNN2015 Physics target.
Wild ideas on photon detection P.Kooijman, NIKHEF.
GERDA Collaboration Meeting,
Very preliminary study of the random background for the BiPo detector (PhoSwich configuration) Work done by Jonathan Ferracci.
Calculation of detector characteristics for KM3NeT
Summary of fiducial volume test at KEK
User Guide Tutorial of ISpy and CIMA
Optimization studies of a tower based km3 detector
Progress on the Focusing DIRC R&D
NKS2 Meeting with Bydzovsky NKS2 Experiment / Analysis Status
Optimization of tower design
Presentation transcript:

INIITIAL POINTS: –LNGS muon Angular Distribution / MACRO / - [1] –Cylindrical symmetry PMT placement Muon Energy – 17.5 GeV Optical Photon Energy – 2–5 eV [ nm] Photocathode Radius – 20 cm Photocathode Quantum Efficiency – 0.15 Water Transparency – 10 m Tyvek Reflactivity – [2] PMT Number - 45 – 150 [ 0.3 – 1.0 % ] Cherenkov photons – 300 photon/cm MaGe frame

SETUP USED IN CALCULATIONS

EVERYWHERE ARE PRESENTED DISTRIBUTIONS OF VALUES

MUON INPUT POINT TO WATER TANK

FIRST PMT HIT

PMT DISTRIBUTION

PMT HITS TIME HIGHT DISTRIBUTION r

COUNT RATE IN WATER TANK

RESULTS By taking 1 and more fired PMT as muon trigger we will have 45 PMT give reduction factor of background ~ 170 / 99.41% / 110 PMT give reduction factor of background ~ 430/ 99.77% / Input count rate is ~ 3500 Hz for N_pmt >0 –Such reduction input External Gammas Background – at level 10^-3 cpy/kg/keV

REFERENCES [1] S.Ahlen et al.,”Muon Astronomy With the Macro detector”, App.J. 412(1993) [2] hep-ex/ “ A new Ge-76 Double Beta decay Experiment at LNGS” [3] C.Arpesella, Nucl.Phys.( Proc. Suppl. ) A 28 (1992)