Wednesday, April 1, 2015PHYS 3313-001, Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, April 1, 2015 Dr. Jaehoon Yu Probability.

Slides:



Advertisements
Similar presentations
The Schrödinger Wave Equation 2006 Quantum MechanicsProf. Y. F. Chen The Schrödinger Wave Equation.
Advertisements

Monday, Oct. 15, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #12 Monday, Oct. 15, 2012 Dr. Jaehoon Yu The Schrödinger.
Monday, Nov. 11, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, Nov. 11, 2013 Dr. Jaehoon Yu Alpha Particle.
Wavefunction Quantum mechanics acknowledges the wave-particle duality of matter by supposing that, rather than traveling along a definite path, a particle.
Schrödinger Equation Outline Wave Equations from ω-k Relations
Modern Physics lecture 3. Louis de Broglie
PHYS 3313 – Section 001 Lecture #17
PHYS 3313 – Section 001 Lecture #21
CHAPTER 6 Quantum Mechanics II
Physics 3 for Electrical Engineering
Incident transmitted reflected III. Heisenberg’s Matrix Mechanics 1924: de Broglie suggests particles are waves Mid-1925: Werner Heisenberg introduces.
Monday, Oct. 22, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Monday, Oct. 22, 2012 Dr. Jaehoon Yu Infinite Potential.
Operators A function is something that turns numbers into numbers An operator is something that turns functions into functions Example: The derivative.
Ch 3. The Quantum Mechanical Postulates
Wednesday, April 8, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, April 8, 2015 Dr. Jaehoon Yu Expectation.
1 PHYS 3313 – Section 001 Lecture #22 Monday, Apr. 14, 2014 Dr. Jaehoon Yu Barriers and Tunneling Alpha Particle Decay Use of Schrodinger Equation on Hydrogen.
Wednesday, Feb. 28, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #9 Wednesday, Feb. 28, 2007 Dr. Jae Yu 1.Quantum Electro-dynamics (QED) 2.Local.
Wednesday, Nov. 6, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, Nov. 6, 2013 Dr. Jaehoon Yu Barriers and.
Wednesday, Oct. 30, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Wednesday, Oct. 30, 2013 Dr. Jaehoon Yu Infinite.
(1) Experimental evidence shows the particles of microscopic systems moves according to the laws of wave motion, and not according to the Newton laws of.
Wednesday, Mar. 5, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #13 Wednesday, Mar. 5, 2003 Dr. Jae Yu Local Gauge Invariance and Introduction.
Wednesday, Oct. 17, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #13 Wednesday, Oct. 17, 2012 Dr. Jaehoon Yu Properties.
Ch 2. The Schrödinger Equation (S.E)
MODULE 1 In classical mechanics we define a STATE as “The specification of the position and velocity of all the particles present, at some time, and the.
The Quantum Theory of Atoms and Molecules The Schrödinger equation and how to use wavefunctions Dr Grant Ritchie.
Chapter 2 The Schrodinger Equation.  wave function of a free particle.  Time dependent Schrodinger equation.  The probability density.  Expectation.
Physics 2170 – Spring Hydrogen atom Next weeks homework should be available by 5pm today and is due next.
Wednesday, Nov. 13, 2013 PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, Nov. 13, 2013 Dr. Jaehoon Yu Solutions.
Schrödinger equation The Nobel Prize in Physics 1933 was awarded jointly to Erwin Schrödinger and Paul Adrien Maurice Dirac "for the discovery of new productive.
1 PHYS 3313 – Section 001 Lecture #16 Monday, Mar. 24, 2014 Dr. Jaehoon Yu De Broglie Waves Bohr’s Quantization Conditions Electron Scattering Wave Packets.
1 PHYS 3313 – Section 001 Lecture #23 Tuesday, Apr. 16, 2014 Dr. Jaehoon Yu Schrodinger Equation for Hydrogen Atom Quantum Numbers Solutions to the Angular.
1 PHYS 3313 – Section 001 Lecture #18 Monday, Mar. 31, 2014 Dr. Jaehoon Yu Valid Wave Functions Energy and Position Operators Infinite Square Well Potential.
Physics 451 Quantum mechanics I Fall 2012 Karine Chesnel.
Monday, April 6, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, April 6, 2015 Dr. Jaehoon Yu Normalization.
Monday, March 30, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #15 Monday, March 30, 2015 Dr. Jaehoon Yu Wave Motion.
PHYS 3313 – Section 001 Lecture #18
Introduction to Quantum Mechanics
Physics Lecture 11 3/2/ Andrew Brandt Monday March 2, 2009 Dr. Andrew Brandt 1.Quantum Mechanics 2.Schrodinger’s Equation 3.Wave Function.
Monday, Nov. 4, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #15 Monday, Nov. 4, 2013 Dr. Jaehoon Yu Finite Potential.
Physics 452 Quantum mechanics II Winter 2012 Karine Chesnel.
Modern Physics lecture X. Louis de Broglie
Monday, Apr. 4, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #16 Monday, Apr. 4, 2005 Dr. Jae Yu Symmetries Why do we care about the symmetry?
CHAPTER 6 Quantum Mechanics II
Wednesday, Nov. 7, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Wednesday, Nov. 7, 2012 Dr. Jaehoon Yu Solutions for.
Monday, April 13, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 19 Monday, April 13, 2015 Dr. Jaehoon Yu Refresher:
Wednesday, April 15, 2015 PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 20 Wednesday, April 15, 2015 Dr. Jaehoon Yu Finite.
Wednesday, Apr. 6, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #17 Wednesday, Apr. 6, 2005 Dr. Jae Yu Symmetries Local gauge symmetry Gauge.
1924: de Broglie suggests particles are waves Mid-1925: Werner Heisenberg introduces Matrix Mechanics In 1927 he derives uncertainty principles Late 1925:
1 PHYS 3313 – Section 001 Lecture #20 Monday, Apr. 7, 2014 Dr. Jaehoon Yu 3D Infinite Potential Well Degeneracy Simple Harmonic Oscillator Barriers and.
Review for Exam 2 The Schrodinger Eqn.
The Quantum Theory of Atoms and Molecules
UNIT 1 Quantum Mechanics.
PHYS 3313 – Section 001 Lecture #21
PHYS 3313 – Section 001 Lecture #17
PHYS 3313 – Section 001 Lecture #18
Wave Physics PHYS 2023 Tim Freegarde.
Schrodinger Equation The equation describing the evolution of Ψ(x,t) is the Schrodinger equation Given suitable initial conditions (Ψ(x,0)) Schrodinger’s.
The Postulates and General Principles
Quantum Physics Comes of Age I incident II transmitted reflected.
Double Slit Experiment
Schrödinger Equation Outline Wave Equations from ω-k Relations
PHYS 3313 – Section 001 Lecture #17
Joseph Fourier ( ).
PHYS 3313 – Section 001 Lecture #19
Linear Vector Space and Matrix Mechanics
Linear Vector Space and Matrix Mechanics
PHYS 3313 – Section 001 Lecture #18
PHYS 3313 – Section 001 Lecture #20
Source: D. Griffiths, Introduction to Quantum Mechanics (Prentice Hall, 2004) R. Scherrer, Quantum Mechanics An Accessible Introduction (Pearson Int’l.
PHYS 3313 – Section 001 Lecture #17
Presentation transcript:

Wednesday, April 1, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #16 Wednesday, April 1, 2015 Dr. Jaehoon Yu Probability of Particle Schrodinger Wave Equation and Solutions Normalization and Probability

Special Project #4 Prove that the wave function  =A[sin(kx-  t)+icos(kx-  t)] is a good solution for the time- dependent Schrödinger wave equation. Do NOT use the exponential expression of the wave function. (10 points) Determine whether or not the wave function  =Ae -  |x| satisfy the time-dependent Schrödinger wave equation. (10 points) Due for this special project is Wednesday, Apr. 8. You MUST have your own answers! Wednesday, April 1, PHYS , Spring 2015 Dr. Jaehoon Yu

The Schrödinger Wave Equation Erwin Schrödinger and Werner Heinsenberg proposed quantum theory in 1920 The two proposed very different forms of equations Heinserberg: Matrix based framework Schrödinger: Wave mechanics, similar to the classical wave equation Paul Dirac and Schrödinger later on proved that the two give identical results The probabilistic nature of quantum theory is contradictory to the direct cause and effect seen in classical physics and makes it difficult to grasp! Wednesday, April 1, PHYS , Spring 2015 Dr. Jaehoon Yu

The Time-dependent Schrödinger Wave Equation The Schrödinger wave equation in its time-dependent form for a particle of energy E moving in a potential V in one dimension is The extension into three dimensions is where is an imaginary number Wednesday, April 1, PHYS , Spring 2015 Dr. Jaehoon Yu

The wave equation must be linear so that we can use the superposition principle. Prove that the wave function in Schrodinger equation is linear by showing that it is satisfied for the wave equation      where a and b are constants and   and  describe two waves each satisfying the Schrodinger Eq. Ex 6.1: Wave equation and Superposition Wednesday, April 1, PHYS , Spring 2015 Dr. Jaehoon Yu Rearrange terms

General Solution of the Schrödinger Wave Equation The general form of the solution of the Schrödinger wave equation is given by: which also describes a wave propagating in the x direction. In general the amplitude may also be complex. This is called the wave function of the particle. The wave function is also not restricted to being real. Only the physically measurable quantities (or observables ) must be real. These include the probability, momentum and energy. Wednesday, April 1, PHYS , Spring 2015 Dr. Jaehoon Yu

Show that Ae i(kx-  t) satisfies the time-dependent Schrodinger wave Eq. Ex 6.2: Solution for Wave Equation Wednesday, April 1, PHYS , Spring 2015 Dr. Jaehoon Yu So Ae i(kx-  t) is a good solution and satisfies Schrodinger Eq.

Determine  Asin(kx-  t) is an acceptable solution for the time- dependent Schrodinger wave Eq. Ex 6.3: Bad Solution for Wave Equation Wednesday, April 1, PHYS , Spring 2015 Dr. Jaehoon Yu This is not true in all x and t. So  (x,t)=Asin(kx-  t) is not an acceptable solution for Schrodinger Eq.