Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Chun Kai Chen Author : Andrew.

Slides:



Advertisements
Similar presentations
Intelligent Database Systems Lab Advisor : Dr.Hsu Graduate : Keng-Wei Chang Author : Gianfranco Chicco, Roberto Napoli Federico Piglione, Petru Postolache.
Advertisements

Efficient Clustering of High Dimensional Data Sets with Application to Reference Matching ANSHUL VARMA FAISAL QURESHI.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Clustering data in an uncertain environment using an artificial.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A novel document similarity measure based on earth mover’s.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology U*F clustering : a new performant “ clustering-mining ”
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 On-line Learning of Sequence Data Based on Self-Organizing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A novel genetic algorithm for automatic clustering Advisor.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Shing Chen Author : Satoshi Oyama Takashi Kokubo Toru lshida 國立雲林科技大學 National Yunlin.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 The k-means range algorithm for personalized data clustering.
Intelligent Database Systems Lab 1 Advisor : Dr. Hsu Graduate : Jian-Lin Kuo Author : Silvia Nittel Kelvin T.Leung Amy Braverman 國立雲林科技大學 National Yunlin.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A Comprehensive Comparison Study of Document Clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology On Data Labeling for Clustering Categorical Data Hung-Leng.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Presenter : Chien Shing Chen Author: Wei-Hao.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A self-organizing neural network using ideas from the immune.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Ming Hsiao Author : Bing Liu Yiyuan Xia Philp S. Yu 國立雲林科技大學 National Yunlin University.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Presenter : Keng-Wei Chang Author: Yehuda.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 New Unsupervised Clustering Algorithm for Large Datasets.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Automatic Recommendations for E-Learning Personalization.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An IPC-based vector space model for patent retrieval Presenter: Jun-Yi Wu Authors: Yen-Liang Chen, Yu-Ting.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 GMDH-based feature ranking and selection for improved.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A k-mean clustering algorithm for mixed numeric and categorical.
A Fuzzy k-Modes Algorithm for Clustering Categorical Data
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author: Manoranjan.
國立雲林科技大學 National Yunlin University of Science and Technology Self-organizing map learning nonlinearly embedded manifoldsmanifolds Author :Timo Simila.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 The Evolving Tree — Analysis and Applications Advisor.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 2007.SIGIR.8 New Event Detection Based on Indexing-tree.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Fast accurate fuzzy clustering through data reduction Advisor.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Utilizing Marginal Net Utility for Recommendation in E-commerce.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Motivated Reinforcement Learning for Non-Player Characters.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author: Chung-hung.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A modified version of the K-means algorithm with a distance.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Sheng-Hsuan Wang Authors :
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Model-based evaluation of clustering validation measures.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Shing Chen Author : Juan D.Velasquez Richard Weber Hiroshi Yasuda 國立雲林科技大學 National.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Extending the Growing Hierarchal SOM for Clustering Documents.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Chun Kai Chen Author : Qing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Information Loss of the Mahalanobis Distance in High Dimensions-
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Mining massive document collections by the WEBSOM method Presenter : Yu-hui Huang Authors :Krista Lagus,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Multiclass boosting with repartitioning Graduate : Chen,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 An initialization method to simultaneously find initial.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology O( ㏒ 2 M) Self-Organizing Map Algorithm Without Learning.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Region-based image retrieval using integrated color, shape,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Unsupervised Learning with Mixed Numeric and Nominal Data.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Validity index for clusters of different sizes and densities Presenter: Jun-Yi Wu Authors: Krista Rizman.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A self-organizing map for adaptive processing of structured.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A new data clustering approach- Generalized cellular automata.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Cost- sensitive boosting for classification of imbalanced.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A hierarchical clustering algorithm for categorical sequence.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Direct mining of discriminative patterns for classifying.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Chien-Shing Chen Author : Jessica K. Ting Michael K. Ng Hongqiang Rong Joshua Z. Huang 國立雲林科技大學.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Towards comprehensive support for organizational mining Presenter : Yu-hui Huang Authors : Minseok Song,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author: Wei Xu,
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology ACM SIGMOD1 Subsequence Matching on Structured Time Series.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Hierarchical model-based clustering of large datasets.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Text Classification Improved through Multigram Models.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Growing Hierarchical Tree SOM: An unsupervised neural.
Intelligent Database Systems Lab Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author : Yongqiang Cao Jianhong Wu 國立雲林科技大學 National Yunlin University of Science.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Dual clustering : integrating data clustering over optimization.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Presenter : Chien-Shing Chen Author: Gustavo.
The Canopies Algorithm from “Efficient Clustering of High-Dimensional Data Sets with Application to Reference Matching” Andrew McCallum, Kamal Nigam, Lyle.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 2005.ACM GECCO.8.Discriminating and visualizing anomalies.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Sheng-Hsuan Wang Author : Sanghamitra.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Prediction model building and feature selection with support.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Visualizing social network concepts Presenter : Chun-Ping Wu Authors :Bin Zhu, Stephanie Watts, Hsinchun.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Yu Cheng Chen Author: Lynette.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Named Entity Disambiguation by Leveraging Wikipedia Semantic Knowledge Presenter : Jiang-Shan Wang Authors.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Adaptive Clustering for Multiple Evolving Streams Graduate.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A Nonlinear Mapping for Data Structure Analysis John W.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A New Cluster Validity Index for Data with Merged Clusters.
Presentation transcript:

Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Chun Kai Chen Author : Andrew McCallum, Kamal Nigam and Lyle H. Ungar Efficient clustering of high- dimensional data sets with application to reference matching ACM 2000

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Outline Motivation Objective Introduction Efficient Clustering with Canopies Experimental Results Conclusions Personal Opinion

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Motivation  Traditional clustering algorithms become computationally expensive when the data set to be clustered is large ─ large number of elements in the data set ─ many features ─ many clusters to discover

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Objective  Introduces a technique for clustering that is efficient when the problem is large in all of these three ways at once  Using canopies for clustering can increase computational efficiency without losing any clustering accuracy

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Introduction Divide the clustering process into two stages efficiently divide the data into overlapping subsets we call canopies (increase computational efficiency) completes the clustering by running a standard clustering algorithm (reduce numbers of cluster)

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Efficient Clustering with Canopies  The key idea of the canopy algorithm ─ greatly reduce the number of distance computations required for clustering ─ by first cheaply partitioning the data into overlapping subsets ─ then only measuring distances among pairs of data points that belong to a common subset  Uses two different sources of information ─ cheap and approximate similarity measure ─ expensive and accurate similarity measure

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Divide the clustering process into two stages  First stage ─ use the cheap distance measure in order to create some number of overlapping subsets, called “canopies"  Second stage ─ execute some traditional clustering algorithm ─ using the accurate distance measure ─ but with the restriction that we do not calculate the distance between two points that never appear in the same canopy

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Create canopies  Start with a list of the data points in any order ─ two distance thresholds, T1 and T2, where T1 > T2 ─ Pick a point off the list and approximately measure its distance to all other points. (This is extremely cheap with an inverted index.) ─ Put all points that are within distance threshold T1 into a canopy ─ Remove from the list all points that are within distance threshold T2  Repeat until the list is empty  Figure 1 shows some canopies that were created by this procedure

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Example

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Canopies with Greedy Agglomerative Clustering  GAC is used to group items together based on similarity  Standard GAC implementation, we need to apply the distance function O(n2) times to calculate all pair-wise distances between items  A canopies-based implementation of GAC can drastically reduce this required number of comparisons

Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Experimental Results

Intelligent Database Systems Lab N.Y.U.S.T. I. M. The error and time costs of different methods of clustering references

Intelligent Database Systems Lab N.Y.U.S.T. I. M. The accuracy of the clustering

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Conclusions  Canopies provide a principled approach  The canopy approach is widely applicable  Have demonstrated the success of the canopies approach on a reference matching problem

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Personal Opinion  High-dimensional data sets problem will become more and more important