Stabilization of Trajectories for Systems with Nonholonomic Constraints G. Walsh, D. Tilbury, S. Sastry, R. Murray, J. P. Laumond
Presentation Topics l Problem of stabilizing a system with nonholonomic(nonintegrable) constraints Non-smooth feedback laws Time-varying feedback laws Brockett’s necessary conditions for stability No nonholonomic system can be asymptotically stabilized using smooth time-invariant state feedback
Problem formulation Given a nonholonomic system and a feasible trajectory to follow, find a control law to stabilize the system to the trajectory
Proposition (Stabilizing control law)
Proof of the Proposition
Example 1 - Heisenberg Control Algebra Trajectories investigated 1) origin x 0 (t)=[0 0 0] u 0 (t)=[0 0] 2) straight line x 0 (t)=[0 t 0] u 0 (t)=[0 1] System dynamics
Example 1 - Heisenberg Control Algebra
1) origin
Example 1 - Heisenberg Control Algebra 2) straight line
Example 1 - Heisenberg Control Algebra Simulation result ( =1/6, =1, =0.5)
Example 2 - Hilare x3 (x1, x2) Desired trajectory: Perfect circle Nominal inputs: u 0 =[1 1]
Example 2 - Hilare => cannot directly compute the control law
Example 2 - Hilare Numerical approach Initial values (t=0) Update laws
Example 2 - Hilare Simulation result ( =0.1, =1, =3)
Simulation result Example 2 - Hilare