Submission doc.: IEEE 11-11/1413r1 Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 1 Real Air-time Occupation by Beacon and Probe Date: 2011-11-02.

Slides:



Advertisements
Similar presentations
Doc.:IEEE /1523r4 Submission November 2011 Access Delay Reduction for FILS: Network Discovery & Access congestion Improvements Slide 1 Authors:
Advertisements

Doc.: IEEE /1031r0 Submission July 2011 Hitoshi MORIOKA, ROOT Inc.Slide 1 Air-time Consumption by Beacon and Probe Date: Authors:
Submission doc.: IEEE 11-11/1413r4 January 2012 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 1 Real Air-time Occupation by Beacon and Probe Date:
Doc.: IEEE /1316r1 Submission Considerations for Cellular-Offloading Use Case Date: September 2011 Joseph Teo Chee Ming et al, I2R.
Doc.: IEEE /0567r1 Submission May 2012 Huawei Slide 1 Multiple Frequency Channel Scanning Date: Authors: NameAffiliationsAddressPhone .
Doc.: IEEE /0537r0 Submission May 2012 Jonathan Segev (Intel)Slide 1 Passive and Active Scanning Mixture Date: Authors:
Doc.: IEEE /1019r1 Submission July 2011 MediaTek, Inc Slide 1 Supporting Large Number of STAs in ah Date: Authors:
Doc.: IEEE 11-14/1380r0 Submission Efficiency Measurement for RTS/CTS October 2014 B. Zhao and K. Yunoki, KDDI R&D LabsSlide 1 Date: Authors:
Doc.: IEEE /1169r1 Submission January 2012 Jihyun Lee, LG ElectronicsSlide 1 FILS Association Date: Authors: NameAffiliationsAddressPhone .
Doc.: IEEE /0672r0 Submission May 2011 ZTE CorporationSlide 1 IEEE ah network operation & management consideration for functional requirement.
Submission doc.: IEEE /1063r0 September 2012 Yasuhiko Inoue (NTT)Slide 1 Requirements on WLAN Cellular Offload Date: Authors:
Doc.: IEEE /0028r1 Submission January 2012 Anna Pantelidou, Renesas Mobile CorporationSlide 1 Power Saving Possibilities for Networks Supporting.
Doc.: IEEE /0034r0 Submission NameAffiliationsAddressPhone Hitoshi MORIOKAAllied Telesis R&D Center Tenjin, Chuo-ku, Fukuoka
Doc.: IEEE /1268r0 Submission November 2010 Minyoung Park, Intel Corp.Slide 1 Low Power Consumption Opportunity in Sub 1 GHz Date:
Doc.: IEEE /0060r1 Submission January 2011 Minyoung Park, Intel Corp.Slide 1 Low Power Capability Support for ah Date: Authors:
Submission doc.: IEEE 11-11/1414r2 November 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 1 Probe Request and Response in TGai Date: Authors:
Submission doc.: IEEE /0801r1 Akira Kishida, NTT Issues of Low-Rate Transmission Date: Authors:
Doc.: IEEE /0648r0 Submission May 2014 Chinghwa Yu et. al., MediaTekSlide 1 Performance Observation of a Dense Campus Network Date:
Submission doc.: IEEE 11-13/0523r2 May 2013 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 1 Understanding Current Situation of Public Wi-Fi Usage - Possible.
Submission doc.: IEEE 11-13/0030r0 January 2013 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 1 User Level Performance Date: Authors:
Doc.: IEEE /0840r1 Submission AP Assisted Medium Synchronization Date: Authors: September 2012 Minyoung Park, Intel Corp.Slide 1.
Submission doc.: IEEE 11-13/1398r0 Nov 2013 Akira Yamada, NTT DOCOMO, Inc.Slide 1 Requirements for HEW Date: Authors:
Submission doc.: IEEE /1288r1 November 2015 K. Yunoki, KDDI R&D Labs.Slide 1 An issue of wider bandwidth operation at real denser environment.
Submission doc.: IEEE 11-12/535r1 May 2012 Jarkko Kneckt, NokiaSlide 1 Scanning and FILS requirements Date: Authors:
Submission doc.: IEEE 11-13/1349r0 November 2013 Katsuo Yunoki, KDDI R&D Labs.Slide 1 Access Control Enhancement Date: Authors:
Submission doc.: IEEE 11-13/1073r0 September 2013 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 1 Access Control Enhancement Date: Authors:
Doc.: IEEE /0619r3 Submission May 2012 Haiguang Wang et. al, I2R, SingaporeSlide 1 Overlapping IEEE ah Networks of Different Types Date:
Submission doc.: IEEE 11-11/0761r0 July 2012 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 1 Operating Channels Information Date: Authors:
Doc.: IEEE /0568r0 Submission May 2012 Young Hoon Kwon, Huawei Slide 1 AP Discovery Information Broadcasting Date: Authors: NameAffiliationsAddressPhone .
Doc.: IEEE /0070r2 SubmissionSlide 1 Efficient Error Control Using Network Coding for Multicast Transmission Date: Authors: DooJung.
Doc.: IEEE /0754r0 Submission July 2015 Jim Lansford, CSR TechnologySlide 1 IEEE ax High Efficiency WLAN WLAN Packet traffic and efficiency.
Doc.:IEEE /1523r1 Submission November 2011 Access Delay Reduction for FILS: Network Discovery & Access congestion Improvements Slide 1 Authors:
Submission doc.: IEEE 11-12/0206r1 March 2012 Slide 1 Necessity of Probe Reduction Date: Authors:
Submission doc.: IEEE /1359r0 November 2015 Yu Wang, Ericsson et al.Slide 1 System Performance Evaluation of ae Date: Authors:
Submission doc.: IEEE /0314r1 March 2016 Katsuo Yunoki, KDDI R&D Labs.Slide 1 Possible Solutions for Mobile Offloading Use Case Date:
Doc.: IEEE /0294r2 Submission March 2012 Jonathan Segev (Intel)Slide 1 Active Scanning Reply Window Date: Authors:
Possible Approaches for HEW
AP Power Saving Date: Authors: May 2017 Month Year
Month Year doc.: IEEE yy/xxxxr0 May 2012
AP discovery with FILS beacon
Proposed SFD Text for ai Link Setup Procedure
Month Year doc.: IEEE /0523r0 May 2013
Some Findings from Real World Measurement
AP Discovery Information Broadcasting
TGaq Pre-Association Summary
Real Air-time Occupation by Beacon and Probe
Real Air-time Occupation by Beacon and Probe
Real Air-time Occupation by Beacon and Probe
Real Air-time Occupation by Beacon and Probe
Multiple Frequency Channel Scanning
FILS Association Date: Authors: Name Affiliations Address
Probe Request and Response in TGai
Reducing Overhead in Active Scanning
Group-addressed GAS Date: Authors: December 2016 July 2013
Reducing Overhead in Active Scanning
Month Year doc.: IEEE yy/xxxxr0
Reducing Overhead in Active Scanning with Simulation Results
AP Status Broadcast Date: Authors: November 2011
Broadcast Service Advertisements
Group-addressed GAS Date: Authors: November 2016 July 2013
Reducing Overhead in Active Scanning with Simulation Results
802.11ai – Improving WLAN System Performance
Power Efficient WUR AP Discovery
Month Year doc.: IEEE yy/xxxxr0 May 2012
Cooperative AP Discovery
Month Year doc.: IEEE yy/xxxxr0
Scanning from Specific Channel
Multiple Frequency Channel Scanning
Reducing Overhead in Active Scanning
Reducing Overhead in Active Scanning
Presentation transcript:

Submission doc.: IEEE 11-11/1413r1 Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 1 Real Air-time Occupation by Beacon and Probe Date: Authors:

Submission doc.: IEEE 11-11/1413r1 Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 2 Abstract This document is not proposal. It is reporting the real Air-time occupation due to explosive increase of Smart- phones.

Submission doc.: IEEE 11-11/1413r1Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 3 Motivation 3G mobile operators have demand to offload their data traffics to WLAN network. Especially, they have higher demands for the locations where many people meet or stay for data offloading, because high data traffics occur at those locations. It’s highly expected that FILS will realize transition from 3G to WLAN in very short time.

Submission doc.: IEEE 11-11/1413r1Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 4 Real world (1) Number of Smart-phone is increasing. iPhone, Android, Windows-phone, Blackberry… Smart-phone holders always touch its screen. While its screen is activated (backlight turned on), Smart-phone starts searching surrounding WLAN-APs.

Submission doc.: IEEE 11-11/1413r1Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 5 Real world (2) Many Smart-phone holders are in the crowded commuter train. Imagine what happens when the train arrives at the station. Air monitoring was executed at a train station in Tokyo. Results are explained in the following slides.

Submission doc.: IEEE 11-11/1413r1Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 6 Conditions Time/Date: Around 18:00 / October 11(Tue), 2011 Location: Shinjuku station (Keio line), Tokyo Monitoring CH: 6CH(2,437MHz) Monitoring period: 300 seconds (5 minutes) Measured CH Thinkpad X200 Windows XP USB Wireless Monitor Adoptor (Air Pcap NX) Wireshark

Submission doc.: IEEE 11-11/1413r1Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 7 Result Observed frames FramesBytes Count% % Beacon13, ,689, Probe Request7, , Probe Response24, ,941, Other46, ,581, Total92,159 17,201,802

Submission doc.: IEEE 11-11/1413r1Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 8 Result (cont.) Time occupation is more important. Doc. IEEE /1031r0 was referred for time occupation analysis. BytesFrames

Submission doc.: IEEE 11-11/1413r1Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 9 Transmission Rate Rate [Mbps] BeaconProbe RequestProbe ResponseOthers Frames% % % % 113, , , , , , , , , Total13,871 7,139 24,687 46,462

Submission doc.: IEEE 11-11/1413r1Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 10 Transmission Rate (cont.) Rate [Mbps] BeaconProbe RequestProbe ResponseOthers Bytes% % % % 1 1,688, , ,849, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,285, , , ,034, Total 1,689, ,797 2,941, ,581,63 4

Submission doc.: IEEE 11-11/1413r1Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 11 Occupied Time Calculation (Beacon) Occupied Time DIFSCWTX TIME aSlotTime:20us aSIFSTime:10us aPreambleLength:144us aPLCPHeaderLength:48bits aCWmin:31 aCWmax:1023 DIFS:50us CW:310us Occupied Time = ∑((DIFS + CW + aPreambleLength + aPLCPHeaderLength/DATARATE) * TotalFrames + (TotalBytes * 8/DATARATE)) = (( / 1.0) * 13,861 + (1,688,640 * 8 / 1.0) + (( / 11.0) * 2 + (80 * 8 / 11.0) + (( / 24.0) * 7 + (280 * 8 / 24.0) + (( / 54.0) * 1 + (40 * 8 / 54.0) = 21,165,613 us (7.06%) Beacon

Submission doc.: IEEE 11-11/1413r1Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 12 Occupied Time Calculation (Probe Request) Occupied Time = ∑((DIFS + CW + aPreambleLength + aPLCPHeaderLength/DATARATE) * TotalFrames + (TotalBytes * 8/DATARATE)) = (( / 1.0) * 6,547 + (838,510 * 8 / 1.0) + (( / 2.0) * 21 + (10,019 * 8 / 2.0) + (( / 5.5) * 13 + (12,633 * 8 / 5.5) + (( / 6.0) * 2 + (1,590 * 8 / 6.0) + (( / 9.0) * 3 + (2,631 * 8 / 9.0) + (( / 11.0) * (76,565 * 8 / 11.0) + (( / 12.0) * 2 + (3,060 * 8 / 12.0) + (( / 18.0) * 7 + (10,198 * 8 / 18.0) + (( / 24.0) * 4 + (3,154 * 8 / 24.0) + (( / 48.0) * 10 + (13,509 * 8 / 48.0) + (( / 54.0) * 20 + (17,928 * 8 / 54.0) = 10,754,454us (3.58%) Occupied Time DIFSCWTX TIME Probe Request

Submission doc.: IEEE 11-11/1413r1Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 13 Occupied Time Calculation (Probe Response) Occupied Time DIFSCWTX TIME Probe ResponseACK TX TIMESIFS aSlotTime:20us aSIFSTime:10us aPreambleLength:144us aPLCPHeaderLength:48bits aCWmin:31 aCWmax:1023 DIFS:50us CW:310us ACKRate:1Mbps ACKLength:14Bytes

Submission doc.: IEEE 11-11/1413r1Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 14 Occupied Time Calculation (Probe Response) (Cont.) Occupied Time = ∑((DIFS + CW + aPreambleLength + aPLCPHeaderLength/DATARATE +aSIFSTime + aPreambleLength + aPLCPHeaderLeangth / ACKRATE + ACKLength * 8 / ACKRATE) * TotalFrames + (TotalBytes * 8/DATARATE)) = (( / /1.0+14*8/1.0) * 24,606 + (2,849,896 * 8 / 1.0) + (( / / * 8 / 1.0) * 4 + (5,257 * 8 / 2.0) + (( / / * 8 / 1.0) * 7 + (10,710 * 8 / 5.5) + (( / / * 8 / 1.0) * 1 + (1,530 * 8 / 6.0) + (( / / * 8 / 1.0) * 1 + (1,530 * 8 / 9.0) + (( / / * 8 / 1.0) * 15 + (13,848 * 8 / 11.0) + (( / / * 8 / 1.0) * 4 + (6,120 * 8 / 12.0) + (( / / * 8 / 1.0) * 7 + (8,212 * 8 / 18.0) + (( / / * 8 / 1.0) * 6 + (5,279 * 8 / 24.0) + (( / / * 8 / 1.0) * 3 + (4,590 * 8 / 36.0) + (( / / * 8 / 1.0) * 2 + (2,259 * 8 / 48.0) + (( / / * 8 / 1.0) * 31 + (32,100 * 8 / 54.0) = 44,215,439us (14.74%)

Submission doc.: IEEE 11-11/1413r1Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 15 Occupied Time Calculation Result Packet type Occupancy rate (%) Occupied time (sec) Beacon Probe Req Probe Res Others Total

Submission doc.: IEEE 11-11/1413r1Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 16 Conclusion Because of WLAN enabled devices increasing, especially Smart-phones, WLAN air circumstances are getting more crowded. In this packet monitoring, probe responses existed 5 times more than probe requests. To see the benefits of effective FILS, improvement of air circumstances would be needed by reducing unnecessary packet exchanges.

Submission doc.: IEEE 11-11/1413r1Nobember 2011 Katsuo Yunoki, KDDI R&D LaboratoriesSlide 17 References doc. IEEE /1031r0