III. Statistics and chi-square How do you know if your data fits your hypothesis? (3:1, 9:3:3:1, etc.) For example, suppose you get the following data.

Slides:



Advertisements
Similar presentations
The Chi Square Test A statistical method used to determine goodness of fit Goodness of fit refers to how close the observed data are to those predicted.
Advertisements

Why do non-Mendelian patterns occur? (When to decide whether it is “Mendelian” or “non- Mendelian”)
General Genetic Bio 221 Lab 6. Law of Independent Assortment (The "Second Law") The Law of Independent Assortment, also known as "Inheritance Law", states.
AP Biology.  Segregation of the alleles into gametes is like a coin toss (heads or tails = equal probability)  Rule of Multiplication  Probability.
Chi-Square Test Chi-square is a statistical test commonly used to compare observed data with data we would expect to obtain according to a specific hypothesis.
Mendelian Genetics. Genes- genetic material on a chromosome that codes for a specific trait Genotype- the genetic makeup of the organism Phenotype- the.
Chi-Square Test A fundamental problem is genetics is determining whether the experimentally determined data fits the results expected from theory (i.e.
What is a χ2 (Chi-square) test used for?
Announcements Please don’t interrupt other classes (including other Genetics labs) to check flies in Brooks 204 (see schedule on the door). Microscopes.
Laws of Probability and Chi Square
Quantitative Skills 4: The Chi-Square Test
Chapter 11 Inference for Distributions of Categorical Data
What is a χ2 (Chi-square) test used for?
Chi-square notes. What is a Chi-test used for? Pronounced like kite, not like cheese! This test is used to check if the difference between expected and.
Chi Square (X 2 ) Analysis Calculating the significance of deviation in experimental results.
Chi-Square Test A fundamental problem in genetics is determining whether the experimentally determined data fits the results expected from theory (i.e.
+ Quantitative Statistics: Chi-Square ScWk 242 – Session 7 Slides.
11.4 Hardy-Wineberg Equilibrium. Equation - used to predict genotype frequencies in a population Predicted genotype frequencies are compared with Actual.
Announcements 1. Answers to Ch. 3 problems 6, 7, 8, 12, 17, 22, 32, 35 posted - 230A. 2. Problem set 1 answers due in lab this week at the beginning of.
Chi Square.
Chi-Square as a Statistical Test Chi-square test: an inferential statistics technique designed to test for significant relationships between two variables.
Chi-Square Test A fundamental problem in genetics is determining whether the experimentally determined data fits the results expected from theory. How.
Chi-Squared (  2 ) Analysis AP Biology Unit 4 What is Chi-Squared? In genetics, you can predict genotypes based on probability (expected results) Chi-squared.
Test for Significant Differences T- Tests. T- Test T-test – is a statistical test that compares two data sets, and determines if there is a significant.
Chapter 9 Three Tests of Significance Winston Jackson and Norine Verberg Methods: Doing Social Research, 4e.
Chi Squared Test. Why Chi Squared? To test to see if, when we collect data, is the variation we see due to chance or due to something else?
Chi square analysis Just when you thought statistics was over!!
Physics 270 – Experimental Physics. Let say we are given a functional relationship between several measured variables Q(x, y, …) x ±  x and x ±  y What.
Chi Square Analysis The chi square analysis allows you to use statistics to determine if your data “good” or not. In our fruit fly labs we are using laws.
Copyright © Cengage Learning. All rights reserved. 12 Analysis of Variance.
Chi-Square Analysis AP Biology.
Lecture 11. The chi-square test for goodness of fit.
Chapter 3 Lecture Concepts of Genetics Tenth Edition Mendelian Genetics.
Wheeler High School The Center for Advanced Studies in Science, Math & Technology Post-AP DNA/Genetics – Ms. Kelavkar Course Introduction Genetics Lecture.
Analyzing Data  2 Test….”Chi” Square. Forked-Line Method, F2 UuDd x UuDd 1/4 UU 1/2 Uu 1/4 uu 1/4 DD 1/2 Dd 1/4 dd 1/4 DD 1/2 Dd 1/4 dd 1/4 DD 1/2 Dd.
Did Mendel fake is data? Do a quick internet search and can you find opinions that support or reject this point of view. Does it matter? Should it matter?
The Chi Square Equation Statistics in Biology. Background The chi square (χ 2 ) test is a statistical test to compare observed results with theoretical.
PROBABILITY AND STATISTICS The laws of inheritance can be used to predict the outcomes of genetic crosses For example –Animal and plant breeders are concerned.
Chi Square Pg 302. Why Chi - Squared ▪Biologists and other scientists use relationships they have discovered in the lab to predict events that might happen.
AP Biology Heredity PowerPoint presentation text copied directly from NJCTL with corrections made as needed. Graphics may have been substituted with a.
Chi-Square (χ 2 ) Analysis Statistical Analysis of Genetic Data.
AP Biology Probability & Genetics. AP Biology Genetics & Probability  Mendel’s laws:  segregation  independent assortment reflect.
Chi-Square Analysis AP Biology.
The Chi Square Test A statistical method used to determine goodness of fit Chi-square requires no assumptions about the shape of the population distribution.
I. CHI SQUARE ANALYSIS Statistical tool used to evaluate variation in categorical data Used to determine if variation is significant or instead, due to.
Genetics and Probability
Chi Square Analysis The chi square analysis allows you to use statistics to determine if your data “good” or not. In our fruit fly labs we are using laws.
Analyzing Data c2 Test….”Chi” Square.
Chi-Square Analysis AP Biology.
The Chi Square Test A statistical method used to determine goodness of fit Goodness of fit refers to how close the observed data are to those predicted.
Chi Square SBI3UP.
MENDELIAN GENETICS CHI SQUARE ANALYSIS
Analyzing Data c2 Test….”Chi” Square.
The Chi Square Test A statistical method used to determine goodness of fit Goodness of fit refers to how close the observed data are to those predicted.
Analyzing Data c2 Test….”Chi” Square.
Chi-Square Analysis.
Mendelian Genetics –cont’d
Chi Square Analysis The chi square analysis allows you to use statistics to determine if your data is “good” or not. In our fruit fly labs we are using.
Chi-Square Analysis AP Biology.
The Chi Square Test A statistical method used to determine goodness of fit Goodness of fit refers to how close the observed data are to those predicted.
Chi Square Analysis The chi square analysis allows you to use statistics to determine if your data is “good”. In our fruit fly labs we are using laws of.
Chi-Square Analysis AP Biology.
Chi2 (A.K.A X2).
Chi-Square Analysis AP Biology.
UNIT V CHISQUARE DISTRIBUTION
S.M.JOSHI COLLEGE, HADAPSAR
Chi Square Analysis The chi square analysis allows you to use statistics to determine if your data “good” or not. In our fruit fly labs we are using laws.
Chi-Square Analysis AP Biology.
Presentation transcript:

III. Statistics and chi-square How do you know if your data fits your hypothesis? (3:1, 9:3:3:1, etc.) For example, suppose you get the following data in a monohybrid cross: PhenotypeDataExpected (3:1) A a Total Is the difference between your data and the expected ratio due to chance deviation or is it significant?

Two points about chance deviation 1. Outcomes of segregation, independent assortment, and fertilization, like coin tossing, are subject to random fluctuations. 2. As sample size increases, the average deviation from the expected fraction or ratio should decrease. Therefore, a larger sample size reduces the impact of chance deviation on the final outcome.

The null hypothesis The assumption that the data will fit a given ratio, such as 3:1 is the null hypothesis. It assumes that there is no real difference between the measured values and the predicted values. Use statistical analysis to evaluate the validity of the null hypothesis. If rejected, the deviation from the expected is NOT due to chance alone and you must reexamine your assumptions. If failed to be rejected, then observed deviations can be attributed to chance.

Process of using chi-square analysis to test goodness of fit Establish a null hypothesis: 1:1, 3:1, etc. Plug data into the chi-square formula. Determine if null hypothesis is either (a) rejected or (b) not rejected. If rejected, propose alternate hypothesis. Chi-square analysis factors in (a) deviation from expected result and (b) sample size to give measure of goodness of fit of the data.

Chi-square formula Once X 2 is determined, it is converted to a probability value (p) using the degrees of freedom (df) = n- 1 where n = the number of different categories for the outcome. where o = observed value for a given category, e = expected value for a given category, and sigma is the sum of the calculated values for each category of the ratio

Chi-square - Example 1 PhenotypeExpectedObserved A a Null Hypothesis: Data fit a 3:1 ratio. degrees of freedom = (number of categories - 1) = = 1 Use Fig to determine p - on next slide

X 2 Table and Graph Unlikely: Reject hypothesis Likely: Do not reject Hypothesis likely unlikely 0.50 > p > 0.20 Figure 3.12

Interpretation of p 0.05 is a commonly-accepted cut-off point. p > 0.05 means that the probability is greater than 5% that the observed deviation is due to chance alone; therefore the null hypothesis is not rejected. p < 0.05 means that the probability is less than 5% that observed deviation is due to chance alone; therefore null hypothesis is rejected. Reassess assumptions, propose a new hypothesis.

Conclusions: X 2 less than 3.84 means that we accept the Null Hypothesis (3:1 ratio). In our example, p = 0.48 (p > 0.05) means that we accept the Null Hypothesis (3:1 ratio). This means we expect the data to vary from expectations this much or more 48% of the time. Conversely, 52% of the repeats would show less deviation as a result of chance than initially observed.

X 2 Example 2: Coin Toss I say that I have a non-trick coin (with both heads and tails). Do you believe me? 1 tail out of 1 toss 10 tails out of 10 tosses 100 tails out of 100 tosses

Tossing Coin - Which of these outcomes seem likely to you? Compare Chi-square with 3.84 (since there is 1 degree of freedom). a) Tails1 of 1 b) Tails 10 of 10 c) Tails100 of 100 Chi-square a) b) c) Don’t reject Reject

X 2 - Example 3 F2 data: 792 long-winged (wildtype) flies, 208 dumpy- winged flies. Hypothesis: dumpy wing is inherited as a Mendelian recessive trait. Expected Ratio? X 2 analysis? What do the data suggest about the dumpy mutation?

Summary of lecture 5 1. Genetic ratios are expressed as probabilities. Thus, deriving outcomes of genetic crosses relies on an understanding of laws of probability, in particular: the sum law, product law, conditional probability, and the binomial theorum. 2. Statistical analyses are used to test the validity of experimental outcomes. In genetics, some variation is expected, due to chance deviation.