1 PHYS 3313 – Section 001 Lecture #4 Monday, Jan. 27, 2014 Dr. Jaehoon Yu Galilean Transformation Do we need Ether? Michelson-Morley Experiment Einstein’s.

Slides:



Advertisements
Similar presentations
Classical Relativity Galilean Transformations
Advertisements

Theory of Special Relativity
P1X*Dynamics & Relativity : Newton & Einstein Chris Parkes October 2005 Special Relativity Postulates Time Dilation Length Contraction Lorentz Transformation.
Relativity Theories. The Principle of Relativity Although motion often appears relative, it’s logical to identify a “background” reference frame from.
Wednesday, Feb. 4, 2015PHYS , Spring 2014 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #5 Wednesday, Feb. 4, 2015 Dr. Jaehoon Yu Einstein’s.
Physics 3 for Electrical Engineering Ben Gurion University of the Negev
 PROGRAM OF “PHYSICS2B” Lecturer: Dr. DO Xuan Hoi Room A1. 413
Derivation of Lorentz Transformations
Special Relativity Lecture 24 F2013 The Postulates Phenomenology The proper frame Time Length Mass energy Measuring events Lorentz transformations 1.
Speed of Light How fast is the speed of light? –depends on material: – in vacuum, c = 3 x 10 8 m/s What is this speed relative to? What is the speed of.
Relativity Pierre-Hugues Beauchemin PHY 006 –Talloire, May 2013.
1 Special Relativity (Ch 37) Modern physics special relativity quantum mechanics Both were developed to explain the “few remaining puzzles” of classical.
SPECIAL RELATIVITY -Postulates of Special Relativity -Relativity of time –> time dilation -Relativity of length –> length contraction © 2005.
1 2.1The Need for Ether 2.2The Michelson-Morley Experiment 2.3Einstein’s Postulates 2.4The Lorentz Transformation 2.5Time Dilation and Length Contraction.
Principle of special relativity Their is inconsistency between EM and Newtonian mechanics, as discussed earlier Einstein proposed SR to restore the inconsistency.
Chapter 37 Special Relativity. 37.2: The postulates: The Michelson-Morley experiment Validity of Maxwell’s equations.
CHAPTER 2 Special Theory of Relativity
Announcements Homework: Supplemental Problems 2 nd Project is due at the final exam which is Tuesday May 5 at 1:30 – 3:30pm. A list of potential projects.
2.1The Apparent Need for Ether 2.2The Michelson-Morley Experiment 2.3Einstein’s Postulates 2.4The Lorentz Transformation 2.5Time Dilation and Length Contraction.
1 Experimental basis for special relativity Experiments related to the ether hypothesis Experiments on the speed of light from moving sources Experiments.
Introduction to special relativity
Special Theory of Relativity
S-164 Countdown G minus 15 and counting. Relativity AP Physics Supplemental.
Page 1 Phys Baski Relativity I Topic #9: Special Relativity I Transformation of Variables between Reference Frames –Non-relativistic Galilean Transformation.
Special relativity.
The Special Theory of Relativity. Galilean-Newtonian Relativity Definition of an inertial reference frame: One in which Newton’s first law is valid Earth.
 Newtonian relativity  Michelson-Morley Experiment  Einstein ’ s principle of relativity  Special relativity  Lorentz transformation  Relativistic.
1 PHYS 3313 – Section 001 Lecture #5 Wednesday, Jan. 29, 2014 Dr. Jaehoon Yu Length Contraction Relativistic Velocity Addition The Twin Paradox Space-time.
Special Relativity The Failure of Galilean Transformations
Relativity Introduction 14.1 Introduction Electrons can be accelerated to 0.99c using a potential difference of 3.1 MV According to Newtonian Mechanics,
Chapter 9 Relativity Basic Problems The formulation of Newtonian mechanics is based on our daily experience and observation. But, Newtonian mechanics.
The Theory of Special Relativity Ch 26. Two Theories of Relativity Special Relativity (1905) –Inertial Reference frames only –Time dilation –Length Contraction.
Consequences of Lorentz Transformation. Bob’s reference frame: The distance measured by the spacecraft is shorter Sally’s reference frame: Sally Bob.
PHYS 3313 – Section 001 Lecture #4
Physics Lecture 2 1/26/ Andrew Brandt Monday January 26, 2009 Dr. Andrew Brandt 1.Special Relativity 2.Galilean Transformations 3.Time.
Monday, Feb. 2, 2015PHYS , Spring 2014 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #4 Monday, Feb. 2, 2015 Dr. Jaehoon Yu Atomic Theory of.
Relativity: QuarkNet Lecture. What we know circa 1900: Light travels at a finite velocity. Ole Rømer Galileo was among the first to try and measure.
Special Relativity I wonder, what would happen if I was travelling at the speed of light and looked in a mirror?
Astronomy 1143 – Spring 2014 Lecture 18: Special Relativity.
The Theory of Special Relativity. Learning Objectives  Einstein’s two postulates in his theory of special relativity: The principle of relativity. (Same.
Phy 107 Fall From Last Time Physics changed drastically in the early 1900’s Relativity one of the new discoveries –Changed the way we think about.
Monday, Feb. 9, 2015PHYS , Spring 2014 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #6 Monday, Feb. 9, 2015 Dr. Jaehoon Yu Relativistic Velocity.
My Chapter 26 Lecture.
Physics 12 MODERN PHYSICS: AN INTRODUCTION.  QUOTE AND CLIP OF.
Introduction Classical Physics Laws: Mechanics (Newton), Electromagnetism (Maxwell), Optics, Fluids,.. Etc. Modern Physics: What do we mean? Are the laws.
Special Relativity 1. Quiz 1.22 (10 minutes) and a few comments on quiz So far we know that Special Relativity is valid for all speeds. But it is.
Chapter 26 Relativity. General Physics Relative Motion (Galilean Relativity) Chapter 3 Section 5
Consequences of Special Relativity Simultaneity: Newton’s mechanics ”a universal time scale exists that is the same for all observers” Einstein: “No universal.
Chapter 39 Relativity. A Brief Overview of Modern Physics 20 th Century revolution 1900 Max Planck Basic ideas leading to Quantum theory 1905 Einstein.
Wed., Sept. 5, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #3 Wednesday, Sept. 5, 2012 Dr. Jaehoon Yu Galilean Transformation.
1 PHYS 3313 – Section 001 Lecture #5 Wednesday, Sept. 11, 2013 Dr. Jaehoon Yu Time Dilation & Length Contraction Relativistic Velocity Addition Twin Paradox.
Chapter 1 Relativity 1.
Derivation of Lorentz Transformations Use the fixed system K and the moving system K’ At t = 0 the origins and axes of both systems are coincident with.
Special Relativity How does light behave in moving reference frames?
PHYS344 Lecture 6 Homework #1 Due in class Wednesday, Sept 9 th Read Chapters 1 and 2 of Krane, Modern Physics Problems: Chapter 2: 3, 5, 7, 8, 10, 14,
Special Relativity (Math)  Reference from Tipler chapter 39-1 to 39-3  Newtonian relativity  Einstein’s postulates  Lorentz transformation  Time dilation.
PHYS 342: More info The TA is Meng-Lin Wu: His is His office hour is 10:30am to 12pm on Mondays His office is Physics.
Lecture 3: PHYS 344 Homework #1 Due in class Wednesday, Sept 9 th Read Chapters 1 and 2 of Krane, Modern Physics Problems: Chapter 2: 3, 5, 7, 8, 10, 14,
Administrative Details: PHYS 344
UNIT-III RIGID BODY DYNAMICS
The complete Lorentz Transformations Including the inverse (i
PHYS 3313 – Section 001 Lecture #5
PHYS 3313 – Section 001 Lecture #6
Lecture 4: PHYS 344 Homework #1 Due in class Wednesday, Sept 9th Read Chapters 1 and 2 of Krane, Modern Physics Problems: Chapter 2: 3, 5, 7, 8, 10, 14,
General Physics (PHY 2140) Lecture 24 Modern Physics Relativity
M.Sc. Integrated Phsics (Ist Semester) Special Theory of Relativity
The Galilean Transformation
“The relativity theory arose from necessity, from serious and deep contradictions in the old theory from which there seemed no escape. The strength.
PHYS 3313 – Section 001 Lecture #5
PHYS 3313 – Section 001 Lecture #5
Presentation transcript:

1 PHYS 3313 – Section 001 Lecture #4 Monday, Jan. 27, 2014 Dr. Jaehoon Yu Galilean Transformation Do we need Ether? Michelson-Morley Experiment Einstein’s postulates Lorentz Transformations Time Dilation & Length Contraction Monday, Jan. 27, 2014PHYS , Spring 2014 Dr. Jaehoon Yu

Monday, Jan. 27, 2014PHYS , Spring 2014 Dr. Jaehoon Yu 2 Announcements Quiz results –Class average: 19.4/65 Equivalent to 30/65 –Top score: 65/65 Reminder for homework #1 –Chapter 2 end of the chapter problems –17, 21, 23, 24, 32, 59, 61, 66, 68, 81 and 96 –Due is by the beginning of the class, Monday, Feb. 3 –Work in study groups together with other students but PLEASE do write your answer in your own way!

The Transition to Modern Relativity Although Newton’s laws of motion had the same form under the Galilean transformation, Maxwell’s equations did not. In 1905, Albert Einstein proposed a fundamental connection between space and time and that Newton’s laws are only an approximation. Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

They Needed Ether!! The wave nature of light suggested that there existed a propagation medium called the luminiferous ether or just ether. –Provides an inertial reference frame The properties of ether –Very low density for planets to move through it without loss of energy –Sufficiently high elasticity to support the high velocity of light waves (c=?) Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

Ether as the Absolute Reference System In Maxwell’s theory, the speed of light is given by –The velocity of light between moving systems must be a constant. Can you see why? –Needed a system of medium that keeps this constant! Ether proposed as the absolute reference system in which the speed of light is constant and from which other measurements could be made. The Michelson-Morley experiment was an attempt to show the existence of ether. Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

The Michelson-Morley Experiment Albert Michelson (1852–1931) built an extremely precise device called the interferometer to measure the phase difference between two light waves traveling in orthogonal directions. Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

How does Michelson Interferometer work? Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu 1.AC is parallel to the motion of the Earth inducing an “ether wind” 2.Light from source S is split by mirror A and travels to mirrors C and D in mutually perpendicular directions 3.After reflection the beams recombine at A slightly out of phase due to the “ether wind” as viewed by telescope E. Ether

The analysis – Galilean X-formation Travel time t1 t1 for a round trip over AC (the ether direction) is Travel time t2 t2 for a round trip over AD (perpendicular direction to ether) is The time difference is Monday, Jan. 27, 2014PHYS , Spring 2014 Dr. Jaehoon Yu 8

The analysis After rotating the machine by 90 o, the time difference becomes The difference of the time differences Since v (the Earth’s speed) is of c, we can do binomial expansion of the above Monday, Jan. 27, 2014PHYS , Spring 2014 Dr. Jaehoon Yu 9

The Results Using the Earth’s orbital speed as: V = 3 × 10 4 m/s together with ℓ 1 ≈ ℓ 2 = 1.2 m So that the time difference becomes Δ t’ − Δ t ≈ v 2 (ℓ 1 + ℓ 2 )/ c 3 = 8 × 10 −17 s Although a very small number, it was within the experimental range of measurement for light waves. Later with Morley, they increased the path lengths to 11m and improved precision better than a factor of 10 Yet, Michelson FAILED to “see” the expected interference pattern Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

Michelson noted that he should be able to detect a phase shift of light due to the time difference between path lengths but found none. He thus concluded that the hypothesis of the stationary ether must be incorrect. After several repeats and refinements with assistance from Edward Morley ( ), again a null result. Thus, ether does not seem to exist! Many explanations ensued afterward but none worked out! This experiment shattered the popular belief of light being waves Conclusions of Michelson Experiment Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

The Lorentz-FitzGerald Contraction Another hypothesis proposed independently by both H. A. Lorentz and G. F. FitzGerald suggested that the length ℓ 1, in the direction of the motion was contracted by a factor of Thus making the path lengths equal to account for the zero phase shift. –This, however, was an ad hoc assumption that could not be experimentally tested. Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

Einstein’s Postulates Fundamental assumption: Maxwell’s equations must be valid in all inertial frames The principle of relativity : The laws of physics are the same in all inertial systems. There is no way to detect absolute motion, and no preferred inertial system exists – Published a paper in 1905 at the age 26 – Believed to be fundamental The constancy of the speed of light : Observers in all inertial systems measure the same value for the speed of light in a vacuum. Monday, Jan. 27, 2014PHYS , Spring 2014 Dr. Jaehoon Yu 13

The Lorentz Transformations General linear transformation relationship between P=(x, y, z, t) in frame S and P’=(x’,y’,z’,t’) in frame S’  these assume measurements are made in S frame and transferred to S’ frame preserve the constancy of the speed of light between inertial observers account for the problem of simultaneity between these observers With the definitions and Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

Properties of the Relativistic Factor  What is the property of the relativistic factor,  ? Is it bigger or smaller than 1? Recall Einstein’s postulate,  = v / c < 1 for all observers Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu  = 1 only when v = 0

The complete Lorentz Transformations Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu Some things to note –What happens when  ~0 (or v~0)? The Lorentz x-formation becomes Galilean x-formation –Space-time are not separated –For non-imaginary x-formations, the frame speed cannot exceed c!

Time Dilation and Length Contraction Time Dilation : Clocks in a moving inertial reference frame K’ run slower with respect to stationary clocks in K. Length Contraction : Lengths measured in a moving inertial reference frame K’ are shorter with respect to the same lengths stationary in K. Direct consequences of the Lorentz Transformation: Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

Time Dilation To understand time dilation the idea of proper time must be understood: proper time, T 0, is the time difference between two events occurring at the same position in a system as measured by a clock at that position. Same location (spark “on” then off”) Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

Is this a Proper Time? spark “on” then spark “off” Beginning and ending of the event occur at different positions Time Dilation Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

Frank’s clock is at the same position in system K when the sparkler is lit in (a) (t=t 1 ) and when it goes out in (b) (t=t 2 ).  The proper time T 0 =t 2 -t 1 Mary, in the moving system K’, is beside the sparkler when it was lit (t=t 1 ’) Melinda then moves into the position where and when the sparkler extinguishes (t=t 2 ’) Thus, Melinda, at the new position, measures the time in system K’ K’ when the sparkler goes out in (b). Time Dilation with Mary, Frank, and Melinda Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

According to Mary and Melinda… Mary and Melinda measure the two times for the sparkler to be lit and to go out in system K’ as times t 1 ’and t 2 ’ so that by the Lorentz transformation: –Note here that Frank records x2 x2 – x1 x1 = 0 in K with a proper time: T0 T0 = t2 t2 – t1 t1 or Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

1) T ‘> T 0 or the time measured between two events at different positions is greater than the time between the same events at one position: time dilation. The proper time is always the shortest time!! 2) The events do not occur at the same space and time coordinates in the two systems 3) System K requires 1 clock and K’ K’ requires 2 clocks. Time Dilation: Moving Clocks Run Slow Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

Time Dilation Example: muon lifetime Muons are essentially heavy electrons (~200 times heavier) Muons are typically generated in collisions of cosmic rays in upper atmosphere and, unlike electrons, decay ( μsec) For a muon incident on Earth with v=0.998c, an observer on Earth would see what lifetime of the muon? 2.2 μsec? t=35 μsec Moving clocks run slow so when an outside observer measures, they see a longer time than the muon itself sees. Monday, Jan. 27, 2014PHYS , Spring 2014 Dr. Jaehoon Yu 23

Experimental Verification of Time Dilation Arrival of Muons on the Earth’s Surface The number of muons detected with speeds near 0.98 c is much different (a) on top of a mountain than (b) at sea level, because of the muon’s decay. The experimental result agrees with our time dilation equation. Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

Length Contraction To understand length contraction the idea of proper length must be understood: Let an observer in each system K and K’ have a meter stick at rest in their own system such that each measures the same length at rest. The length as measured at rest at the same time is called the proper length. Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

Length Contraction cont’d Each observer lays the stick down along his or her respective x axis, putting the left end at xℓ xℓ (or x’ ℓ ) and the right end at xr xr (or x’ r ). Thus, in the rest frame K, Frank measures his stick to be: Similarly, in the moving frame K’, Mary measures her stick at rest to be: Frank in his rest frame measures the moving length in Mary’s frame moving with velocity v. Thus using the Lorentz transformations Frank measures the length of the stick in K’ as: Where both ends of the stick must be measured simultaneously, i.e, tr tr = tℓtℓ Here Mary’s proper length is L’0 L’0 = x’r x’r – x’ℓx’ℓ and Frank’s measured length is L = xr xr – xℓxℓ Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu

Measurement in Rest Frame The observer in the rest frame measures the moving length as L given by but since both Mary and Frank in their respective frames measure L ’ 0 = L0L0 and L 0 > L, i.e. the moving stick shrinks Monday, Jan. 27, PHYS , Spring 2014 Dr. Jaehoon Yu