黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Exploring Spatial-Temporal Trajectory Model for Location.

Slides:



Advertisements
Similar presentations
Decision Tree Evolution using Limited number of Labeled Data Items from Drifting Data Streams Wei Fan 1, Yi-an Huang 2, and Philip S. Yu 1 1 IBM T.J.Watson.
Advertisements

Principles of Density Estimation
Mining User Similarity Based on Location History Yu Zheng, Quannan Li, Xing Xie Microsoft Research Asia.
Moving Pattern Detection in Spatio Temporal Data Mining BY SEKHAR NALLURI VENGALA RAO PACHVA SURYA KOGANTI.
Mining Frequent Patterns II: Mining Sequential & Navigational Patterns Bamshad Mobasher DePaul University Bamshad Mobasher DePaul University.
Mining Frequent Spatio-temporal Sequential Patterns
A Phrase Mining Framework for Recursive Construction of a Topical Hierarchy Date : 2014/04/15 Source : KDD’13 Authors : Chi Wang, Marina Danilevsky, Nihit.
Frequent Closed Pattern Search By Row and Feature Enumeration
Yasuhiro Fujiwara (NTT Cyber Space Labs)
10 -1 Lecture 10 Association Rules Mining Topics –Basics –Mining Frequent Patterns –Mining Frequent Sequential Patterns –Applications.
G. Alonso, D. Kossmann Systems Group
BOAT - Optimistic Decision Tree Construction Gehrke, J. Ganti V., Ramakrishnan R., Loh, W.
Patch to the Future: Unsupervised Visual Prediction
Yoshiharu Ishikawa (Nagoya University) Yoji Machida (University of Tsukuba) Hiroyuki Kitagawa (University of Tsukuba) A Dynamic Mobility Histogram Construction.
Learning on Probabilistic Labels Peng Peng, Raymond Chi-wing Wong, Philip S. Yu CSE, HKUST 1.
Constructing Popular Routes from Uncertain Trajectories Authors of Paper: Ling-Yin Wei (National Chiao Tung University, Hsinchu) Yu Zheng (Microsoft Research.
Calibration of an Infrared-based Automatic Counting System for Pedestrian Traffic Flow Data Collection Step 3: Calibration Models Calibration models were.
Report on Intrusion Detection and Data Fusion By Ganesh Godavari.
© Prentice Hall1 DATA MINING TECHNIQUES Introductory and Advanced Topics Eamonn Keogh (some slides adapted from) Margaret Dunham Dr. M.H.Dunham, Data Mining,
Presented by Ozgur D. Sahin. Outline Introduction Neighborhood Functions ANF Algorithm Modifications Experimental Results Data Mining using ANF Conclusions.
Student: Hsu-Yung Cheng Advisor: Jenq-Neng Hwang, Professor
2008 Chingchun 1 Bootstrap Chingchun Huang ( 黃敬群 ) Vision Lab, NCTU.
Fast Algorithms for Association Rule Mining
Estimate the Number of Relevant Images Using Two-Order Markov Chain Presented by: WANG Xiaoling Supervisor: Clement LEUNG.
Learning Transportation Mode from Raw GPS Data for Geographic Applications on the Web Yu Zheng, Like Liu, Xing Xie Microsoft Research.
Extracting Places and Activities from GPS Traces Using Hierarchical Conditional Random Fields Yong-Joong Kim Dept. of Computer Science Yonsei.
Alert Correlation for Extracting Attack Strategies Authors: B. Zhu and A. A. Ghorbani Source: IJNS review paper Reporter: Chun-Ta Li ( 李俊達 )
Chapter 8 Prediction Algorithms for Smart Environments
Mining Interesting Locations and Travel Sequences from GPS Trajectories IDB & IDS Lab. Seminar Summer 2009 강 민 석강 민 석 July 23 rd,
Intelligent Database Systems Lab Presenter: MIN-CHIEH HSIU Authors: NHAT-QUANG DOAN ∗, HANANE AZZAG, MUSTAPHA LEBBAH 2013 NN Growing self-organizing trees.
Sequential PAttern Mining using A Bitmap Representation
Knowledge Discovery and Delivery Lab (ISTI-CNR & Univ. Pisa)‏ www-kdd.isti.cnr.it Anna Monreale Fabio Pinelli Roberto Trasarti Fosca Giannotti A. Monreale,
AR mining Implementation and comparison of three AR mining algorithms Xuehai Wang, Xiaobo Chen, Shen chen CSCI6405 class project.
DEMS: A Data Mining Based Technique to Handle Missing Data in Mobile Sensor Network Applications Le Gruenwald Md. Shiblee SadikRahul Shukla Hanqing Yang.
黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica TrajPattern: Mining Sequential Patterns from Imprecise Trajectories.
Efficient Data Mining for Calling Path Patterns in GSM Networks Information Systems, accepted 5 December 2002 SPEAKER: YAO-TE WANG ( 王耀德 )
Report on Intrusion Detection and Data Fusion By Ganesh Godavari.
Spatial-Temporal Models in Location Prediction Jingjing Wang 03/29/12.
Graph Indexing: A Frequent Structure- based Approach Alicia Cosenza November 26 th, 2007.
A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting Huang, C. L. & Tsai, C. Y. Expert Systems with Applications 2008.
Using Inactivity to Detect Unusual behavior Presenter : Siang Wang Advisor : Dr. Yen - Ting Chen Date : Motion and video Computing, WMVC.
Probabilistic Coverage in Wireless Sensor Networks Authors : Nadeem Ahmed, Salil S. Kanhere, Sanjay Jha Presenter : Hyeon, Seung-Il.
Privacy-preserving rule mining. Outline  A brief introduction to association rule mining  Privacy preserving rule mining Single party  Perturbation.
Fast Kernel-Density-Based Classification and Clustering Using P-Trees Anne Denton Major Advisor: William Perrizo.
Tell Me What You See and I will Show You Where It Is Jia Xu 1 Alexander G. Schwing 2 Raquel Urtasun 2,3 1 University of Wisconsin-Madison 2 University.
Project Lachesis: Parsing and Modeling Location Histories Daniel Keeney CS 4440.
August 30, 2004STDBM 2004 at Toronto Extracting Mobility Statistics from Indexed Spatio-Temporal Datasets Yoshiharu Ishikawa Yuichi Tsukamoto Hiroyuki.
黃福銘 (Angus). Angus Fuming Huang Academia Sinica, Institute of Information Science, ANTS Lab Jae-Gil Lee Jiawei Han UIUC Kyu-Young Whang KAIST ACM SIGMOD’07.
Network Community Behavior to Infer Human Activities.
Intelligent DataBase System Lab, NCKU, Taiwan Josh Jia-Ching Ying 1, Wang-Chien Lee 2, Tz-Chiao Weng 1 and Vincent S. Tseng 1 1 Department of Computer.
Mining Trajectory Profiles for Discovering User Communities Speaker : Chih-Wen Chang National Chiao Tung University, Taiwan Chih-Chieh Hung,
1 Introduction to Data Mining C hapter 1. 2 Chapter 1 Outline Chapter 1 Outline – Background –Information is Power –Knowledge is Power –Data Mining.
 Present by 陳群元.  Introduction  Previous work  Predicting motion patterns  Spatio-temporal transition distribution  Discerning pedestrians  Experimental.
1 Approximate XML Query Answers Presenter: Hongyu Guo Authors: N. polyzotis, M. Garofalakis, Y. Ioannidis.
Predicting the Location and Time of Mobile Phone Users by Using Sequential Pattern Mining Techniques Mert Özer, Ilkcan Keles, Ismail Hakki Toroslu, Pinar.
Discriminative Training and Machine Learning Approaches Machine Learning Lab, Dept. of CSIE, NCKU Chih-Pin Liao.
Data Mining By Farzana Forhad CS 157B. Agenda Decision Tree and ID3 Rough Set Theory Clustering.
An Energy-Efficient Approach for Real-Time Tracking of Moving Objects in Multi-Level Sensor Networks Vincent S. Tseng, Eric H. C. Lu, & Kawuu W. Lin Institute.
On Reducing Classifier Granularity in Mining Concept-Drifting Data Streams Peng Wang, H. Wang, X. Wu, W. Wang, and B. Shi Proc. of the Fifth IEEE International.
A Flexible Spatio-temporal indexing Scheme for Large Scale GPS Tracks Retrieval Yu Zheng, Longhao Wang, Xing Xie Microsoft Research.
Discovering Frequent Arrangements of Temporal Intervals Papapetrou, P. ; Kollios, G. ; Sclaroff, S. ; Gunopulos, D. ICDM 2005.
DATA MINING © Prentice Hall.
Fast Kernel-Density-Based Classification and Clustering Using P-Trees
G10 Anuj Karpatne Vijay Borra
Online Frequent Episode Mining
Cheng-Ming Huang, Wen-Hung Liao Department of Computer Science
Spatial Online Sampling and Aggregation
Topological Signatures For Fast Mobility Analysis
Jinwen Guo, Shengliang Xu, Shenghua Bao, and Yong Yu
Presentation transcript:

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Exploring Spatial-Temporal Trajectory Model for Location Prediction TMSG- Paper Reading

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Agenda Authors & Publication Paper Presentation My Comments 2

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Authors & Publication Wen-Chih Peng ( 彭文志 ) – – Advanced Database System Lab – – Best Student Paper Award IEEE MDM2011 – 3

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Paper Outline Introduction Related works Framework Model Prediction Experiments Conclusion 4

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Introduction Location prediction problem – Given an object’s recent movements and a future time, the location of this object at the future time is estimated 5

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Motivation 6 11:30? T1 勝出 !!

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Related works Next movement – Markov chain – Motion functions Granularity problem – Density-based – Grid-based Pattern recognition – Trajectory mining 7

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica The framework of location prediction using STT model Frequent region discovery – Sufficient number of data points Trajectory transformation – Region-based moving sequence STT model construction – Probabilistic suffix tree – Transition probability – Appearing probability 8PST

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica The framework of location prediction using STT model (contd.) 9

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Spatial-temporal trajectory model construction Frequent region discovery and trajectory transformation – Def. 1: Frequent Region – Def. 2: Region-based Moving Sequence Spatial-temporal trajectory model construction – Predictive table: spatial and temporal correlation between the region and next movement – Transition time interval: i k+1 = (mean, sd) – MinSup: minimal support segment count in a region – Object moving time: Gaussian distribution 10

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Frequent region discovery Eps: the neighborhood number of a given radius MinTs: minimum number of points 11

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Trajectory transformation 12 MinSup = 6 !!

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Spatial-temporal trajectory model construction 13

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica STT model 14

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Location prediction using STT model Prediction concept – To find the best next movement literally until the query time is reached Kernel methods – Movement similarity – Moving potential – Location prediction 15

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Movement similarity To search a best similar node between query sequence and STT node Measuring the similarity of a labeled sequence of a tree node n k of STT and the moving sequence s q – i is the longest common suffix of n k and s q – The more recent movements have greater effect on future movements S q =abc ; Patterns: a(0.07), b(0.27), c(0.64), bc(0.91), ab(0.34) 16

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Moving potential To calculate the next movement candidates of the best similar node located Measuring the spatial and temporal relationship simultaneously – Pro spatial : Conditional probability – Pro temporal : Chebyshev’s inequality 17

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Moving potential (contd.) Arrival time t e = current time t c + average transition interval mean Temporal error: Minimum difference of t e and the representative time t k+1 of next movement candidates Example: Next movement of n k : i k+1 =(5,2) t k+1 ={12:00, 15:00, 17:00} If the current time is 11:52 ================================ Arrival time = 11: = 11:57 Minimum temporal error = |11:57-12:00|=3 Pro temporal = (2^2) / (3^2) =

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Location prediction 19

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Location prediction (contd.) 20 1 (1x1)

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Experiments Experimental setting Prediction accuracy comparison Storage requirements comparison Sensitivity analysis of parameters 21

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Experimental setting CarWeb – – Authors’ work published in 2008 – A real car trajectory dataset – Hsinchu city, Taiwan RunSaturday – – Collect training paths of sports hobbyists – Walk, run, bike 22

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Prediction accuracy comparison E1: To verify the prediction accuracy of STT can be improved by using grid-based clustering approach – STT-Grid vs. STT-DBSCAN – Test 150 queries – Prediction error 23

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Prediction accuracy comparison (contd.) E2: Prediction performance comparison – STT vs. HPM (Hybrid Prediction Model) – An association rule-based pattern prediction approach – Under the various MinTs – Prediction error 24

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Storage requirements comparison HPM dramatically grows with the MinTs STT using data structure of suffix tree can compress the number of sequential patterns 25

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Sensitivity analysis of parameters 26

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Sensitivity analysis of parameters (contd.) 27

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Sensitivity analysis of parameters (contd.) 28

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Sensitivity analysis of parameters (contd.) 29

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Conclusion To discover frequent movement patterns To answer predictive queries To reduce the pattern storage size A spatial-temporal trajectory model – Capture an object’s moving behavior – Forecast its future locations 30

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica My Comments Strengths~ – Well paper structure – Well representative illustrations – Abundant experiments Accuracy + storage + sensitivity – Transition probability + Appearing probability Be a more sophisticated trajectory formation 31

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica My comments (contd.) Weaknesses~ – Too many repeated sentences – No future work suggestions – The definition / interval of the RECENT movement is vague – The sentence (assumption) needs to be verified (by experiments) “The more recent movements have greater effect on future movements” 32

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica My comments (contd.) Doubt~ ? – Frequent region detection:: Order issue vs. MinSup ? 33

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica My comments (contd.) Insight~ – Different mobility modes reflect different movement patterns number Arbitrary vs. Limited Different prediction design – Reduce patterns number – Promote prediction accuracy 34

黃福銘 (Angus F.M. Huang) ANTS Lab, IIS, Academia Sinica Thanks for your listening……….. 35