A Method for Obtaining Detailed Abundances of Extragalactic Globular Clusters w/ Andy McWilliam (Carnegie Obs.) Scott Cameron, Janet Collucci (UM) MW-

Slides:



Advertisements
Similar presentations
T.P. Idiart  and J.A. de Freitas Pacheco   Universidade de São Paulo (Brasil)  Observatoire de la Côte d’Azur (France) Introduction Elliptical galaxies.
Advertisements

Neutron-capture Elements in M15 Kaori Otsuki (U Chicago), S. Honda, W. Aoki, T. Kajino (NAOJ) J. W. Truran, V. Dwarkadas, A. Medina (U Chicago) G. J. Mathews.
Carbon Enhanced Stars in the Sloan Digital Sky Survey ( SDSS ) T. Sivarani, Young Sun Lee, B. Marsteller & T. C. Beers Michigan State University & Joint.
Effects of Non-Solar Abundance Ratios on Star Spectra: Comparison of Observations and Models. Overview:-  Importance of element abundances  New measurements.
Martin Asplund Galactic archeology & planet formation.
Lithium abundance in the globular cluster M4: from the Turn-Off up to the RGB Bump Collaborators: M. Salaris (University of Liverpool, UK) L. Lovisi, F.R.
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio, Dec 2003 Abundances in NGC6752.
Exploring the Stellar Populations of Early-Type Galaxies in the 6dF Galaxy Survey Philip Lah Honours Student h Supervisors: Matthew Colless Heath Jones.
Stars science questions Origin of the Elements Mass Loss, Enrichment High Mass Stars Binary Stars.
Exploring the Stellar Populations of Early-Type Galaxies in the 6dF Galaxy Survey Philip Lah Honours Student h Supervisors: Matthew Colless Heath Jones.
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio Abundances in M71.
Outline  Introduction  The Life Cycles of Stars  The Creation of Elements  A History of the Milky Way  Nucleosynthesis since the Beginning of Time.
1 Galactic Science and MOS on the WHT Amina Helmi.
The Stellar Populations of Galaxies H.-W. Rix IMPRS Galaxies Course March 11, 2011 Goal: Determine n * (M *,t age,[Fe/H],R) for a population of galaxies.
Lecture 10 Metalicity Evolution Simple models for Z(  ( t ) ) (Closed Box, Accreting Box, Leaky Box) Z = - y ln(  ) = y ln( 1 /  ) “G dwarf problem”
NGC 2419 – the most bizarre Galactic globular cluster Judith Cohen (Caltech) & Evan Kirby (UC Irvine/Caltech) Conference: Small Stellar Systems, Tuscany,
Introduction Ken Freeman Australian National University Monash 20 Jan, 2014.
Observational Properties of Extragalactic Globular Cluster Systems
The Remarkable Chemical Compositions of Blue Metal-Poor Stars George Preston on behalf of Chris Sneden friends & collaborators George Preston (Carnegie.
A Novel Technique for the Determination of IMF at Low Masses: A Few Results for Galaxies with Old Stellar Populations Nikolay Podorvanyuk 1 Igor Chilingarian.
Evolutionary Population Synthesis models Divakara Mayya INAOEhttp:// Advanced Lectures on Galaxies (2008 INAOE): Chapter 4.
Lectures on Stellar Populations Spectral Indices Broad Band Colors are affected by the AGE-METALLICITY DEGENERACY Spectral indices have been introduced.
Presolar grains and AGB stars Maria Lugaro Sterrenkundig Instituut University of Utrecht.
High Resolution Spectroscopy of Stars with Planets Won-Seok Kang Seoul National University Sang-Gak Lee, Seoul National University Kang-Min.
Stellar Populations Science Knut Olsen. The Star Formation Histories of Disk Galaxies Context – Hierarchical structure formation does an excellent job.
Chapter 16 – Chemical Analysis Review of curves of growth –The linear part: The width is set by the thermal width Eqw is proportional to abundance –The.
'Sculptor'-ing the Galaxy? Doug Geisler, Universidad de Concepción Verne Smith, UTEP George Wallerstein, U Washington Guillermo Gonzalez, ISU Corinne Charbonnel,
Abundance Patterns to Probe Stellar Nucleosynthesis and Chemical Evolution Francesca Primas.
Oscar A. Gonzalez PhD ESO-Garching 3rd Subaru conference: Galactic Archaeology, Deep field and the formation of the Milky Way, Japan, 2011.
Lectures on Early-type galaxies PART II (M. Bernardi)
Multiple stellar populations and the horizontal branch of globular clusters Raffaele Gratton INAF – Osservatorio Astronomico di Padova.
Chemical Composition of Planet-Host Stars Wonseok Kang Kyung Hee University Sang-Gak Lee Seoul National University.
Comprehensive Stellar Population Models and the Disentanglement of Age and Metallicity Effects Guy Worthey 1994, ApJS, 95, 107.
AIMS OF G ALACTIC C HEMICAL E VOLUTION STUDIES To check / constrain our understanding of stellar nucleosynthesis (i.e. stellar yields), either statistically.
Chapter 15 – Measuring Pressure (con’t) Temperature spans a factor of 10 or so from M to O stars Pressure/luminosity spans six orders of magnitude from.
Monitoring of the Yellow Hypergiant Rho Cas: Results of the High-Resolution Spectroscopy During V.G. Klochkova (SAO RAS, Nizhnij Arkhyz, Russia)
The Star Formation Histories of Red Sequence Galaxies Mike Hudson U. Waterloo / IAP Steve Allanson (Waterloo) Allanson, MH et al 09, ApJ 702, 1275 Russell.
Yonsei Evolutionary Population Synthesis (YEPS): Effects of Super-Helium-Rich Populations Chul Chung, Young-Wook Lee, and Suk-Jin Yoon Department of Astronomy,
Galactic structure and star counts Du cuihua BATC meeting, NAOC.
Dr. Alan Alves-Brito ARC Super Science Fellow Red giant stars as tracers of the chemical evolution of the Galactic bulge.
Lecture 18 Stellar populations. Stellar clusters Open clusters: contain stars loose structure Globular clusters: million stars centrally.
M5 = NGC 5904 ( nearest “intermediate-metallicity” globular cluster accessible from a northern hemisphere site ) Harris (2003, Feb version) 7.5kpc from.
Why do globular clusters have more than one main sequence? Ref: Gratton et al. 2012, A&ARv, 20, 50.
June 5, 2006 AAS/Calgary Stellar Populations: Old Stars in the Nearest E Galaxy From Field Stars to Globular Clusters.
Galactic Archaeology wishy-washy Nobuo Arimoto NAOJ.
52 0 Congresso SAIT - Teramo 2008 The Globular Clusters of the Large Magellanic Cloud : chemical abundances and ages Alessio Mucciarelli Università di.
Population synthesis models and the VO
Julie Hollek and Chris Lindner.  Background on HK II  Stellar Analysis in Reality  Methodology  Results  Future Work Overview.
The Chemo-Dynamical Structure of Galaxies: intermediate resolution spectroscopy of resolved stellar populations out to Virgo Giuseppina Battaglia ESO Simulations.
Light Elements (Li and Be) in Globular Clusters L. Pasquini, ESO  Li in Turn-Off (or close to TO)  Li in evolved stars  A new result..  Be in TO stars.
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio, Oct 2003 Abundances in M92.
The Cecilia Payne-Gaposchkin Lecture Center for Astrophysics May 9, 2002.
SEGUE Target Selection on-going SEGUE observations.
Multiple populations in globular clusters: a clue to second parameter problem? R. Gratton INAF-Osservatorio Astronomico di Padova, Italy World of Clusters,
Galaxy formation and evolution with a GSMT: The z=0 fossil record 17 March, 2003.
Determining Ages of APOGEE Giants with Known Distances Diane Feuillet New Mexico State University Jon Holtzman, Jo Bovy, Leo Girardi The APOGEE Team.
“Globular” Clusters: M15: A globular cluster containing about 1 million (old) stars. distance = 10,000 pc radius  25 pc “turn-off age”  12 billion years.
Holtzman: General interests ● Stellar populations – Solar neighborhood star formation history – Local group dwarf star formation histories – M33 star formation.
Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) Project: Spectroscopic Analyses of the First ~80 Stars 5 May 2010 Julie Krugler.
Abundance analysis on Late G giants — 59 stars of Xinglong Planet search sample Yujuan Liu( 劉玉娟 ) NAOC/NAOJ Ando H., G. Zhao, Sato Bun’ei, Takeda Y.,
Stellar Populations Science Knut Olsen. The Star Formation Histories of Disk Galaxies Context – Hierarchical structure formation does an excellent job.
Adding the s-Process to APOGEE Stellar Populations: - Evolving the Line List - Pushing to the M-dwarfs Verne V. Smith (NOAO) Katia Cunha, Matthew Shetrone,
Chemical enrichment mechanisms in Omega Centauri:
Determining Abundances
Star Formation Nucleosynthesis in Stars
B. Barbuy IAG - Universidade de São Paulo
1. The Stellar Populations of NGC5128
Population synthesis models and the VO
Chapter 16 – Chemical Analysis
The SAURON Survey - The stellar populations of early-type galaxies
Presentation transcript:

A Method for Obtaining Detailed Abundances of Extragalactic Globular Clusters w/ Andy McWilliam (Carnegie Obs.) Scott Cameron, Janet Collucci (UM) MW- 47TucNGC 5128 LMC- NGC 2005

Galaxy #1, Milky Way: Formation: halo  bulge/thick disk  thin disk Evidence: abundances (Fe,O,Mg,Eu…) & kinematics (bulk, streams) (1) Stars: *timescales*, substructure ( recent: Ivans et al 2003) The goal: formation histories of galaxies halo thick bulge thin Prochaska et al 2004Yanny et al 2003

Galaxy #1, Milky Way: Formation: halo  bulge/thick disk  thin disk Evidence: abundances & kinematics (2) Globular clusters: easy targets! date-able! old! The goal: formation histories of galaxies Parmentier et al 2000

Formation history of other galaxies: Local Group: getting details (limitation: flux) Evidence: Supergiants ( Venn et al 04, McWilliam & Smecker-Hanes 04 ) bright = young! (no history) Venn et al 2004

Formation history of other galaxies: Beyond…: different tools (limitation: flux & resolution) Evidence: integrated light - broad-band colors + [stellar population models] general: red (old/metal-rich) blue (young/metal-poor) - line indices + [stellar population models] Lick System (Worthey et al, Trager et al, Gonzalez et al), Rose

Formation history of other galaxies: Worthy 1998 Age Z blue Beyond: low resolution spectra (>2Å) + stellar population models Limitations: 1- Age/metallicity degenerate (young/z-rich  old/z-poor) 2- z vs Fe ? Mg, O,Ca…? calibration: abundances ratios? * multiple generations of star formation.

Formation history of other galaxies : Forbes et al. 04 Age Z Beyond: low resolution spectra (>2Å) + stellar population models Limitations: 1- Age/metallicity degenerate (young/z-rich  old/z-poor) 2- z vs Fe ? Mg,O,Ca…? calibration: abundances ratios? Recent: Principle component analysis: PC1  metallicity Strader,Brodie ’04,Burstein et al 04 Globular clusters*

Formation history of other galaxies : Forbes et al. 04 Beyond: integrated light of GCs Principle component analysis: PC1  metallicity Forbes et al.’04, Strader,Brodie ’04, Burstein et al 04 [Fe/H] ( or z):  0.1 dex (optimistic?) Age:  3 Gyrs [E/Fe]:  (?) (“  ” or “enhanced”) C,N; O,Mg,Si,Ca; Cr; Na produced in SNII, SNI, and AGB stars Missing: z vs. Fe vs. , self-enrichment, IMF **M31: young (0.5-5Gyr), disk GC system (Beasley 04, Burstein 04, Morrison 04)

Why high resolution? [Fe/H]  -1 Perrett et al 2002, M31 Globular cluster spectra: 5.1 Å 0.17 Å Mg 2 Mg b

Why globular clusters? E, Sa galaxies:  v  150km (R  850) Milky Way GCs:  v  2-18 (R  7-60 k) -7 > M v > -9 10,000 < R < 30,000

Element-yield review: < 2M  : H  C 2-8M  :H  C/O/Ne, n-capture (s-process) [binary] SN Type I: Fe-peak 8-30M  : H  Fe, SN Type II: Fe-peak,  -elements, n-capture (r-process) Punch line: “  -elements” …………………SN II:fast (Myrs) (O,Mg, Si,S,Ca, Ti; Al,Na?) Fe:…………………………………SN I: slow (Gyrs) SN II:fast Fe-peak (21-30p) :………… SN I: slow (Sc, V, Cr, Mn, SN II:fast Co, Ni, Cu, Zn) Fe-dep. yields? Heavy (Ba, Y, Zr, La, Sr…) …………SN I: slow (Eu, Sm, Nd…) …………………SN II:fast Why get detailed abundances? Prochaska et al 2000, Bensby et al 2004 halo thick bulge thin

Element-yield review:  (X) = relative number = (x/H) = log (N(X)/N(H)) + 12 [Fe/H] = log(Fe/H) - log(Fe/H)  [X/Fe] =  (X/Fe) -  (X/Fe)  z = mass fraction beyond He z  = halo thick bulge thin Why get detailed abundances? Prochaska et al 2000 deficient enriched Metal poor

[  /Fe] vs [Fe/H]: formation timescale [Eu/Fe]: r-process (SNII) IMF, nucleosynthesis [Ba/Fe] : s-process (SNI, low-m), IMF, nucleosynthesis Why get detailed abundances? *1- Detailed formation of galaxy #2 2- test stellar population models 3- understand the line indices halo thick bulge thin Prochaska et al 2000 deficient enriched Metal poor

The goal: GC abundances outside the local group… Requirements: S/N  50 H  R  10,000 – 30, A MIKE + Magellan: GC limit  18 V mag Bernstein, Shectman, Gunnels, installed Nov 2002

NGC 5128: S0 (Dec = -43) D = 3.5 Mpc m-M = 27.7 GCs: M v  mag (RGB tip: v  mag) (young supergiants) Rejkuba 2001 (UVES/FORS imaging) The goal: Galaxies outside the local group…

NGC 1313: SBd (Dec = -66) D = 4.4 Mpc m-M = 28 GC: v  mag (RGB tip: v  mag)

High resolution analysis — A Training Set The Milky Way Globular Clusters (  = mag/asec 2 ):

High resolution analysis — A Training Set [Fe/H] = -2.0  v = 4km/s V = -6 mag vs [Fe/H]=-0.76  v = 12km/s V = -9 mag Milky Way GCs: GC Integrated Light Spectra (ILS) at different abundances & masses

High resolution analysis — A Training Set NGC 104 (47Tuc): [Fe/H] =  v = 12 km/s V = -9 mag Eu in RGB: EW= 16 mÅ! Milky Way GCs: ILS spectrum vs single RGB

A Training Set: Milky Way: 7 clusters (  = mag/asec 2 ): [Fe/H] Mv ngc ngc ngc ngc ngc ngc 104(47Tuc) ngc LMC: 7 clusters to date (m-M=18.5, m v =10 mag,  v = mag/asec 2 ) ngc 2019, 2005[Fe/H] ≈ -2.0old (>5 Gyr) ngc 1866, 1978[Fe/H] ≈ ?intermediate ( Gyr) ngc 1711, 2002, 2100[Fe/H] ≈ -0.6young (<0.1 Gyr)

Training Set: observations Milky Way (6) + LMC (8) : Integrated light spectra 32”x32” 12”x12” 1”x4” slit MW: 47Tuc LMC: n1711 individual stars

Training Set: analysis? Individual stars: EW obs vs. Modeled stellar atmospheres - Kurucz stellar atmosphere grids (ATLAS9) T eff *( B-V) obs log g *(V) obs  *(1-2 km/s) [Fe/H]  mass,T,P,N(e-) - MOOG (Sneden 1998), for each line:, EP, loggf,  (X)  EW mod *tune to get same  (Fe) for all FeI,II lines.

Training Set: analysis Integrated light: EW obs vs ??? Build up an atmosphere model. RESOLVED globular cluster --> observed CMD!

Training Set: analysis Integrated light: EW obs vs composite model atmosphere - Kurucz stellar atmosphere grids (ATLAS9) T eff ( B-V) obs log g (V) obs   log g [Fe/H] - MOOG (Sneden v.1998), for each line:, EP, loggf,  (X)  EW per box.  Combine to get light-weight EW * NO PARAMETER TUNING

Training Set: step 0 - observed CMD RESOLVED globular cluster --> observed CMD! Training set issues: scanned core only! rare stars not included.

Training Set: step 0 - observed CMD (n6397) NGC 6397: Stable FeI solution: Is  (Fe) stable with lines’ Excitation Potential Checks T eff, reddening: Population of energy state depends on T

Training Set: step 0 - observed CMD (n6397) NGC 6397: Stable FeI solution:Is  (Fe) stable with lines’ wavelength Checks fraction of flux from hot/cool stars: blue light -- from hot stars with weak lines red light -- cool stars with strong lines.

Training Set: step 0 - observed CMD (n6397) NGC 6397: Stable FeI solution: Is  (Fe) stable with lines’ EW. Checks  (  log g, 1-2 km/s) Microturbulence decreases saturation of strong lines. (0km/s larger covering factor in wavelength space. Larger velocities “spread” the atoms in wavelength space, decreasing saturation.)

Training Set: step 0 - observed CMD (n6397) Balmer lines: equivalent widths (EW) and profiles example: NGC member RGB star NGC ILS 47 Tuc - ILS Broadened by hot stars Age/Metallicity: Old/metal-rich = red (cool) Young/metal-poor = blue (hot)

Training Set: step 0 - observed CMD (n6397) Balmer lines: H , H , H , H  — EW and profiles — ILS NGC 6397 — synthesized lines from the observed CMD (w/ BHB) (w/o BHB) Age/Metallicity + HB morphology Observational constraint: flux in / color of HB (otherwise, HB is a wild card…Age? mass loss?)

Training Set: step 0 - observed CMD (n6397) ILS analysis [Fe/H] x  (x) N-lines  /  N[X/Fe][X/Fe] Cr FeI FeII NiI  -elements: MgI CaI TiI,II n-capture BaII (Castihlo 2000) NGC 6397: Derived abundances — consistent with results from single stars!

What (we think) we know from analysis of a RESOLVED GC (n6397): 1. the composite stellar models can work! 2. We have tools to identify problems! Balmer lines  T eff (CMD: reddening, {age, [Fe/H]}, HB morph) FeI (EW, EP, ) FeI vs Fe II  log g (CMD: giants vs dwarfs, age) (ionized lines sensitive to N(e-)) RECAP —

Training Set: step 1 - isochrone CMD (47Tuc) GCs are a single age population! Isochrones - stellar evolution models predict cluster CMD at given age. Padova (Girardi et al 2000) BaSTI (Pietrinferni et al 2004) + Kroupa IMF (Kroupa & Boily 2002), flattens below 0.5M  + Normalize #’s of stars to observed M v (In the case of a faint cluster, don’t make boxes w/ <1 star) What if the cluster is unresolved? (e.g. NGC )

Training Set: step 1 - isochrone CMD (47Tuc) Do they reproduce the CMD? 2 problems: 1. mass segregation (for training set) 2. AGB bump (general) 47Tuc Schiavon et al 2002 Spitzer & Hart 1971 MW: eg. Ferraro 1997 LMC: eg.Grijs et al 2002

Training Set: step 1 - isochrone CMD (47Tuc) Do they reproduce the CMD? Adjustments: 1- remove stars 3 mag below turn-off. 2- increase fraction in AGB bump.

Training Set: step 1 - isochrone CMD (4 GCs) 1- Balmer lines - H , H , H , H  EW and profile Models: age = 6.3 Gyr z = * note blends

Training Set: step 1 - isochrone CMD (4 GCs) 1- Balmer lines - H , H , H , H  EW’s Color = AGE NGC 6397 match: Age ≈ 6.3 Gyr [A/H] ≈ -2 Models change very little > 3 Gyrs

Training Set: step 1 - isochrone CMD (4 GCs) 1- Balmer lines - H , H , H , H  EW’s and profiles Models: age = 10 Gyr z = *note blends are worse!! (metal rich GC) Need to synthesize blended lines

Training Set: step 1 - isochrone CMD (4 GCs) 1- Balmer lines - H , H , H , H  EW’s 47Tuc match: Age ≈ Gyr [A/H] ≈ -0.9

What (we think) we know: Balmer lines T eff (CMD: reddening, {age, [Fe/H]}, HB morph) * add synthesis of blended lines age constraints are weak FeI stability w/ (EW, EP, ) T eff (CMD: reddening, {age, [Fe/H]}, HB morph) FeI vs Fe II log g (CMD: giants vs dwarfs, age) RECAP

2- FeI & FeII Training Set: step 2 - isochrone CMD (47 Tuc) (Padova, unadjusted isochrones)

2- FeI & FeII [FeI/H]  input [A/H]  input age Training Set: step 2 - isochrone CMD (47 Tuc) (Padova, unadjusted isochrones)

2- FeI & FeII [FeI/H]  input [A/H]  input age +/-0.1 !! at <1 Gyr: young = hot modeled lines=weak. at >1 Gyr: models not changing much Training Set: step 2 - isochrone CMD (47 Tuc) (Padova, unadjusted isochrones)

Training Set: step 2 - isochrone CMD (47 Tuc) FeI checks: no FeI slope w/ EP if:age > 2 & [A/H] < -1 w/ if: age > 3 w/ EW if:age > 3 Gyrs

2- FeI & FeII [FeI/H]  input [A/H]  input age +/ !! [FeII/H]  input [A/H]  input age Training Set: step 2 - isochrone CMD (47 Tuc) (Padova, unadjusted isochrones)

Training Set: step 2 - isochrone CMD (47 Tuc) The age-metallicity degeneracy!

2- FeI & FeII [FeI/H]  input [A/H]  input age +/ !! [FeII/H]  input [A/H]  input age expected age to increase giant:dwarf… g … N(e-). Training Set: step 2 - isochrone CMD (47 Tuc) (Padova, unadjusted isochrones)

2- FeI & FeII [FeI/H]  input [A/H]  input age +/-0.05 !! (statistical) [FeII/H]  input [A/H] (  N(e-))  input age [Fe/H]=[FeII/H]: [Fe/H]  -0.6 age = 5-16 Gyrs Best FeI solution: [Fe/H]  -0.6 (10Gyr, [A/H]=-0.68) Training Set: step 2 - isochrone CMD (47 Tuc) (Padova, unadjusted isochrones)

Training Set: step 2 - isochrone CMD (47 Tuc) 1- iron peak x  (x)  N-lines [X/Fe][Fe/H][X/Fe] (C’04) Sc II V I Cr I Mn I Fe I , (KI’03) Fe II Ni I * Abundance results for 47Tuc! Carretta et al 2004 Kraft & Ivans 2003 (Padova, 10Gyr, [A/H]=-0.68, adjusted) Isochrone analysis (w/ mass segregation + boosted AGB dump) CONSISTENT with solution from individual stars. unambiguous [Fe/H]=0.7

Training Set: step 2 - isochrone CMD (47 Tuc) (Padova, 10Gyr, [A/H]=-0.68, adjusted) Abundance results for 47Tuc!

Training Set: step 2 - isochrone CMD (47 Tuc) 2.  -elements x  (x)  N-lines [X/Fe][X/Fe] (CG04) [O I] Mg I Si I Ca I Ti I Ti II non-alpha, light elements Na I Al I (Padova, 10Gyr, [A/H]=-0.68, adjusted) Carretta & Gratton 2004 Abundance results for 47Tuc!

Training Set: step 2 - isochrone CMD (47 Tuc) 4- neutron-capture elements (s-, r-process) x  (x)  N-lines [X/Fe][X/Fe] Y II ? (Brown+Wallerstein’89) Y I: Zr I * ? Ba II *-0.11 La II Nd II Eu II ? (Padova, 10Gyr, [A/H]=-0.68, adjusted) Abundance results for 47Tuc!

Results for 47Tuc:  -elements: Similar to halo/bulge. Exactly as expected. light-elements: (Na, Al) HIGH! Consistent with proton-burning (self-enrichment!) in GCs: Ne  Na, Mg  Al Gratton, Sneden, Carretta 2004 halo thick bulge thin

Results on 47Tuc: halo thick bulge thin Fe-Peak elements: Similar to halo/bulge. Exactly as expected.

Results on 47Tuc: Heavy elements: (r-, s-process) Similar to halo… close to solar. Sites of r-process not well known. Differences in SN yields with metallicity…

Second Training Set - LMC Important because: 1- MW GCs all age > 8 Gyrs … LMC 0.1 < Age < 5 Gyr 2- Test the standard model for chemical enrichment! [  /Fe] > 0 when metal poor, [  /Fe] ~ 0 when metal rich Single stars: Magellan+MIKE (VLT+UVES) ILS: 2.5m telescope

EXTRAGALACTIC GCs -- first round targets NGC 5128: S0, D = 3.5 Mpc m-M = 27.7 Mv  mag hghh23 Mv=18.3 B-V=1.1 (red)Peng et al hghh29 Mv=18.2 B-V=1.0 (red) hghh17 Mv=17.6 B-V=0.8 (blue) NGC 1313: SBd, D = 4.4 Mpc, m-M = 28.2 Mv  mag 379: Mv=17.6 B-V=0.27 (blue)Larson et al 1999

EXTRAGALACTIC GCs — first peak…

Next steps: 1. MW & LMC -new abundances results -mass estimates -finish the “training” 2. NGC 5128 & NGC first metallicities in *old* extragalactic environment

Training Set: step 1 - isochrone CMD (47Tuc) Do they reproduce the CMD? Adjustments: 1- remove stars 3 mag below turn-off. 2- increase fraction in AGB bump.

Training Set: observations Milky Way (6) + LMC (8) : Integrated light spectra individual stars 32”x32” 12”x12” 1”x4” slit MW: 47Tuc LMC: n1711

Training Set: step 1 - isochrone CMD (47Tuc) Do they reproduce the CMD?

Training Set: step 1 - isochrone CMD (4 GCs) 1- Balmer lines - H , H , H , H  EW’s and profiles

Training Set: step 1 - isochrone CMD (4 GCs) 1- Balmer lines - H , H , H , H  EW’s NGC 6752 match: Age ≈ 6.3 Gyr [A/H] ≈ -1.5

Training Set: step 1 - isochrone CMD (4 GCs) 1- Balmer lines - H , H , H , H  EW’s and profiles

Training Set: step 1 - isochrone CMD (4 GCs) 1- Balmer lines - H , H , H , H  EW’s n6388 match: Age ≈ 12 Gyr [A/H] ≈ -2 Age ≈ 6.3 Gyr [A/H] ≈ -1 Age ≈ 2 Gyr [A/H] ≈ -0.4

Galaxy #1, Milky Way: Formation: halo  bulge/thick disk  thin disk Evidence: abundances (Fe,O,Mg,Eu…) & kinematics (bulk… streams) Stars (Ivans et al 2003: halo substructure… #SNI/II) The goal: formation histories of galaxies halo thick bulge thin Prochaska et al 2004Odenkirchen et al 2002

Formation history of other galaxies: Beyond…: coarse information Evidence: integrated light -- “z” + bulk kinematics - broad-band colors + [stellar population models] - line indices + [stellar population models] Extended thick disks are uniformly old and metal poor compared to thin disk. Limitations: 1- age metallicity degeneracy 2- calibration Dalcanton et al 2002, Zibetti et al 02

Formation history of other galaxies: Beyond…:coarse information Evidence: integrated light: “z” + bulk kinematics - broad-band colors + [stellar population models] red= old/metal rich blue= young/metal poor - low resolution spectra (>2Å, R<2000) line indices + stellar population models (Lick, Rose: Worthey et al, Trager et al, Tripico & Bell, Rose et al)

Formation history of other galaxies: Worthy 1998 Age Z blue Beyond: integrated light of **GCs** low resolution spectra (>2Å) + stellar population models Limitations: 1- Age/metallicity degenerate (young/z-rich  old/z-poor) 2- accuracy: [Fe/H]: ± few/10 dex (?) z vs Fe ? Mg, O,Ca…? calibration? fiducial populations? * SINGLE generations of star formation.

Formation history of other galaxies: Worthy 1998 Age Z blue Beyond: integrated light of *GCs* low resolution spectra (>2Å) + stellar population models Limitations: 1- Age/metallicity degenerate (young/z-rich  old/z-poor) 2- coarse: [Fe/H]: ± few/10 dex 3- z vs Fe ? Mg, O,Ca…? 4- calibration? abundance of fiducial populations? O,Mg,Ca vs Fe * SINGLE* generations of star formation.