Use Inscribed Angles and Polygons Lesson 10.4. Definitions/Theorem 10.7 BAC = ½(BC) Intercepted Arc Inscribed Angle A B C. Central Angle.

Slides:



Advertisements
Similar presentations
Chapter 10 Circles Section 10.3 Inscribed Angles U SING I NSCRIBED A NGLES U SING P ROPERTIES OF I NSCRIBED P OLYGONS.
Advertisements

TODAY IN GEOMETRY… Review:
By: Justin Mitchell and Daniel Harrast. Inscribed angle- an angle whose vertex is on a circle and whose sides contain chords of the circle. Intercepted.
For each circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1)2)
10.3 Inscribed Angles Goal 1: Use inscribed angles to solve problems Goal 2: Use properties of inscribed polygons CAS 4, 7, 16, 21.
Inscribed Angles Section 10.5.
10.2– Find Arc Measures. TermDefinitionPicture Central Angle An angle whose vertex is the center of the circle P A C.
Warm up 30  80  100  180  100  260 . Review HW.
12.3 Inscribed Angles. Using Inscribed Angles An inscribed angle is an angle whose vertex is on a circle and whose sides contain chords of the circle.
Use Inscribed Angles and Polygons
6.4 Use Inscribed Angles and Polygons Quiz: Friday.
Warm – up 2. Inscribed Angles Section 6.4 Standards MM2G3. Students will understand the properties of circles. b. Understand and use properties of central,
1 Sect Inscribed Angles Goal 1 Using Inscribed Angles Goal 2 Using Properties of Inscribed Angles.
10.4 Use Inscribed Angles and Polygons. Inscribed Angles = ½ the Measure of the Intercepted Arc 90 ̊ 45 ̊
Section 10.3 – Inscribed Angles
Geometry Section 10-4 Use Inscribed Angles and Polygons.
Chapter 10.4 Notes: Use Inscribed Angles and Polygons
Inscribed Angles By the end of today, you will know what an inscribed angle is and how to find its measure.
Warm up. P A B Case I: Central Angle: Vertex is AT the center 
Inscribed Angles 10.3 California State Standards
Warm Up Week 1. Section 10.3 Day 1 I will use inscribed angles to solve problems. Inscribed Angles An angle whose vertex is on a circle and whose.
Bell work 1 Find the measure of Arc ABC, if Arc AB = 3x, Arc BC = (x + 80º), and __ __ AB BC AB  BC AB = 3x º A B C BC = ( x + 80 º )
10.3 Inscribed Angles. Definitions Inscribed Angle – An angle whose vertex is on a circle and whose sides contain chords of the circle Intercepted Arc.
Section 10.3 Inscribed Angles. Inscribed Angle An angle whose vertex is on a circle and whose sides contain chords of the circle Inscribed Angle.
Warm up. Review HW Skills Check P A B Case I: Central Angle: Vertex is AT the center 
Inscribed Angle: An angle whose vertex is on the circle and whose sides are chords of the circle INTERCEPTED ARC INSCRIBED ANGLE.
Have your homework out and be ready to discuss any questions you had. Wednesday, February 6, 2013 Agenda No TISK or MM HW Questions (9-2 & 9-3) Lesson.
Warm up 30  80  100  180  100  260 . Inscribed Angles and Inscribed Quadrilaterals.
10.3 Inscribed Angles Geometry. Objectives/Assignment Reminder Quiz after this section. Use inscribed angles to solve problems. Use properties of inscribed.
Objective: Measures of Inscribed Angles & Inscribed Polygons. (3.12.3) Section 10.4.
Warm-up Find the measure of each arc.. Inscribed Angles.
Inscribed Angles By the end of today, you will know what an inscribed angle is and how to find its measure.
10.3 Inscribed Angles Intercepted arc. Definition of Inscribed Angles An Inscribed angle is an angle with its vertex on the circle.
Section 10-3 Inscribed Angles. Inscribed angles An angle whose vertex is on a circle and whose sides contain chords of the circle. A B D is an inscribed.
Warm up April 22. EOCT Week 14 #2 Review HW P A B Case I: Central Angle: Vertex is AT the center 
Inscribed Angles Lesson 10.3b California State Standards 4: Prove theorems involving congruence and similarity 7: Prove/use theorems involving circles.
PROPERTIES OF CIRCLES Chapter – Use Properties of Tangents Circle Set of all points in a plan that are equidistant from a given point called.
Topic 12-3 Definition Secant – a line that intersects a circle in two points.
Warm up 30  80  100  180  100  260 . Wheel of Formulas!!
Inscribed Angles. Challenge Problem F G I H E l D F G I H E l.
For each circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1)2)
Circles.
Geometry 11-4 Inscribed Angles
Do Now.
Inscribed Angles By the end of today, you will know what an inscribed angle is and how to find its measure.
Warm up.
Warm up NL and KM are diameters.
Warm up 30 80 100 180 100 260.
Warm up 30 80 100 180 100 260.
Daily Check For each circle C, find the value of x. Assume that segments that appear to be tangent are tangent. 1) 2)
Warm-Up Determine whether arc is a major or minor arc.
Warm up 30 80 100 180 100 260.
Warm up.
Warm up.
WELCOME Math 2 Last Night’s HW: None Chapter 9: Circles
Section 10.3 – Inscribed Angles
Use Inscribed Angles and Polygons
Inscribed Angles and Quadrilaterals
Warm up Find the missing measures: 130° D A R ° 60 C 230° B.
Warm up NL and KM are diameters.
Warm up 30 80 100 180 100 260.
Inscribed Angle: An angle whose vertex is on the circle and whose sides are chords of the circle
_____________: An angle whose vertex is on the circle and whose sides are chords of the circle
Section 10.4 Use Inscribed Angles And Polygons Standard:
Inscribed Angles & Inscribed Quadrilaterals
10.4 Inscribed Angles.
Warm up #1 1/6 & 1/9 30 80 100 180 100 260.
10.4 Use Inscribed ∡s and Polygons
Class Opener:
Presentation transcript:

Use Inscribed Angles and Polygons Lesson 10.4

Definitions/Theorem 10.7 BAC = ½(BC) Intercepted Arc Inscribed Angle A B C. Central Angle

Find the measure of RS Find the measure of the TU S T UR 31° 118 ᵒ.

Theorem 10.8 If two inscribed angles of a circle intercept the same arc, then the angles are congruent D C A B ADB = ACB

Definitions Inscribed Polygon- A polygon with all of its vertices on the edge of the circle. Circumscribed Circle – The circle that contains the vertices Circumscribed Circles Inscribed Quadrilateral Inscribed Triangle

Theorem 10.9 The hypotenuse of an inscribed right triangle in a circle is the diameter. Converse is also true. (Reminder diameter is opposite of right angle). A B C

Theorem A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary. 98° 112° 68° 82° = =180