HW2 AHU problems: Book: 8.5, 8.25, 8.27, 8.28, 8.22 Cooling Cycles Problems: - Book: 3.1 (page 69), - Book: 3.5 ((page 70), - Out of book: Same like 3.5.

Slides:



Advertisements
Similar presentations
Chapter 11 Refrigeration Cycles Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel.
Advertisements

Refrigeration Cycles د/ محمود عبدالوهاب.
Refrigeration Cycles CHAPTER 11: PTT 201/4 THERMODYNAMICS
Department of Mechanical Engineering ME 322 – Mechanical Engineering Thermodynamics Review for Exam 3.
10 CHAPTER Refrigeration Cycles.
Refrigeration Cycles Chapter 11.
Refrigeration and Cryogenics Maciej Chorowski Faculty of Mechanical and Power Engineering.
Refrigeration Thermodynamics Professor Lee Carkner Lecture 21.
Department of Mechanical Engineering ME 322 – Mechanical Engineering Thermodynamics Lecture 29 The Vapor Compression Refrigeration (VCR) Cycle.
Objectives Finish with Multizone Systems
ISAT Module III: Building Energy Efficiency
HOT COLD HOT COLD The Ideal Vapor-Compression Refrigeration Cycle 1-2 Isentropic compression in a compressor 2-3 Constant-pressure heat rejection in.
Refrigerators and Heat Pumps
Refrigeration Cycles Chapter 11: ERT 206/4 THERMODYNAMICS
Objectives Finish with plotting processes on Psychrometric chart
Objectives Finished Cooling Towers and Adiabatic Humidifiers
Vapor and Combined Power Cycles (2)
Chapter10 Refrigeration Cycle 10-1 Vapor-Compression Cycle The Reversed Carnot Cycle T s THTH TLTL Coefficient of Performance.
Heat Transfer Equations For “thin walled” tubes, A i = A o.
Chapter 15 Refrigeration Refrigeration systems: To cool a refrigerated space or to maintain the temperature of a space below that of the surroundings.
Refrigeration Basics 101.
Objectives Solve examples Learn about refrigerants, compressors, and expansion valves (Ch. 4) Compare residential and commercial systems Introduce heat.
Vapour Compression Refrigeration Systems
The Refrigeration Process
Refrigeration Cycles (YAC: 7-13 trough 7-16)
Chapter 11 Refrigeration Cycles Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 8th edition by Yunus A. Çengel.
President UniversityErwin SitompulThermal Physics 10/1 Lecture 10 Thermal Physics Dr.-Ing. Erwin Sitompul President University
Heat Transfer Equations For “thin walled” tubes, A i = A o.
Objectives Finish analysis of most common HVAC Systems
Objectives Differentiate CAV, VAV, dual-duct systems
Objectives Cooling Cycles –Examples Cooling system components Refrigerants.
Refrigeration Cycles A Carnot cycle in reverse QL QH T s 2
Objectives Finish analysis of most common HVAC Systems Cooling Systems Describe vapor compression cycle basics Draw cycle on T-s diagrams Compare real.
Refrigeration and Cryogenics Maciej Chorowski Faculty of Mechanical and Power Engineering.
Objectives Empathize with refrigerant Describe refrigeration cycles Analyze cycles on T-s diagrams Compare real cycles to ideal cycles Basis for discussion.
Chapter 9. Refrigeration and Liquefaction (냉동과 액화)
Vapour Compression Cycle You will Learn: 1 Vapour Compression Cycle Actual Vapour Compression Cycle Components in a Vapour Compression Plant Multistage.
VAPOUR ABSORPTION REFRIGERATION SYSTEM
Prepared by:- B.S.Bhandari Faculty HNBGU.  Refrigeration is a science of producing and maintaining temperature below that of the surrounding temperature.
Chapter 11 Refrigeration Cycles Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 7th edition by Yunus A. Çengel.
Chapter 11 REFRIGERATION CYCLES
Objectives Finish analysis of most common HVAC Systems
SNS COLLEGE OF ENGINEERING Coimbatore-107 Subject: Thermal Engineering
Mohamed Iqbal Pallipurath
Presentation Title “Reversed Carnot Cycle”
Compound VCRS.
Chapter 11 Refrigeration Cycles Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel.
ICE 101 REFRIGERATION BASICS
Objectives Humidifying - steam - adiabatic Cooling towers
Objectives Cooling Cycles Cooling system components Refrigerants
Lecture Objectives: Learn more about cooling cycles.
Objectives Learn about Cooling towers Cooling cycles.
Lecture Objectives: Analyze cooling cycles.
Objectives AHU processes - HW2 Cooling cycles.
Objectives Control: Cooling towers Multizone vs. Single system
HW2 Book problems: 8.5, 8.25, 8.27, 8.28, 8.22  Additional Design Problem (#5): Due October 7th.
Objectives Cooling Systems
Chapter 11 Refrigeration Cycles Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel.
Refrigeration and Air Conditioning
Refrigeration and Air Conditioning
Objectives Solve one more example related to the psychometrics in AHU and building systems Learn about the psychometrics related to the cooling towers.
By : Jagdeep Sangwan The Vapor Compression Refrigeration (VCR) Cycle.
Objectives Psychometrics Examples in AHUs.
Objectives Finalize AHU processes
10 CHAPTER Refrigeration Cycles.
Air Treatment School Refrigerated Dryer Training
“THERMODYNAMIC AND HEAT TRANSFER”
A presentation on “VAPOUR COMPRESSION REFRIGERATION SYSYTEM”
Objectives Processes in Cooling towers and AHUs.
Presentation transcript:

HW2 AHU problems: Book: 8.5, 8.25, 8.27, 8.28, 8.22 Cooling Cycles Problems: - Book: 3.1 (page 69), - Book: 3.5 ((page 70), - Out of book: Same like 3.5 for R22 with no intercooler - Book 3.9 (pages 70-71)

Objectives Learn about Cooling towers Cooling cycles

Cooling Tower Similar to an evaporative cooler, but the purpose is often to cool water Widely used for heat rejection in HVAC systems Also used to reject industrial process heat

Cooling Tower

Solution Can get from Stevens diagram (page 272) Can also be used to determine Minimum water temperature Volume of tower required Can be evaluated as a heat exchanger by conducting NTU analysis

Summary Heat rejection is often accomplished with devices that have direct contact between air and water Evaporative cooling Can construct analysis of these devices Requires parameters which need to be measured for a specific system

Vapor Compression Cycle Expansion Valve

Efficiency First Law Coefficient of performance, COP COP = useful refrigerating effect/net energy supplied COP = q r /w net Second law Refrigerating efficiency, η R η R = COP/COP rev Comparison to ideal reversible cycle

Efficiency First Law Coefficient of performance, COP COP = useful refrigerating effect/net energy supplied COP = q r /w net Second law Refrigerating efficiency, η R η R = COP/COP rev Comparison to ideal reversible cycle

Carnot Cycle No cycle can have a higher COP All reversible cycles operating at the same temperatures (T 0, T R ) will have the same COP For constant temp processes dq = Tds COP = T R /(T 0 – T R )

Carnot Vapor-Compression Cycle Figure 3.2

Get Real Assume no heat transfer or potential or kinetic energy transfer in expansion valve COP = (h 3 -h 2 )/(h 4 -h 3 ) Compressor displacement = mv 3

Area Analysis of Work and Efficiency

Comparison Between Single-Stage and Carnot Cycles

Example R-22 condensing temp of 30 °C (86F) and evaporating temp of 0°C (32 F) Determine a) q carnot w carnot b) Diminished q R and excess w for real cycle caused by throttling and superheat horn c) η R

Subcooling and Superheating Refrigerant may be subcooled in condenser or in liquid line Temperature goes below saturation temperature Refrigerant may be superheated in evaporator or in vapor (suction) line Temperature goes above saturation temperature

Two stage systems