A Computational Approach to Minimalism Alain LECOMTE INRIA-FUTURS (team SIGNES) & CLIPS-IMAG (Grenoble)
22/12/2003ICON Alain Lecomte2 minimalism the current trend in Generative Syntax (Chomsky, 1995, 1998, 2001) Minimalist grammars : Stabler, 1997, 1999, 2001 etc. Categorial grammars : Morrill, 1995, Moortgat, 1997, Lambek, 1958, 1988 etc. CG and MG : Lecomte and Retoré, 1999, 2001, 2002 etc.
22/12/2003ICON Alain Lecomte3 Minimalism and Formal Grammars Several attempts to formalise « minimalist principles »: Stabler, 1997, 1999, 2000, 2001: - « minimalist grammars » (MG) Weak equivalence with: - Multiple Context-Free Grammars (Seki et al. Harkema) - Linear Context-Free Rewriting Systems (Michaelis)
22/12/2003ICON Alain Lecomte4 Results from formal grammars Weak equivalence with: - Multiple Context-Free Grammars (Seki et al. Harkema) - Linear Context-Free Rewriting Systems (Michaelis) Mildly context-sensitivity Equivalence with multi-component TAGs (Weir, Rambow, Vijay-Shankar) Polynomiality of recognition
22/12/2003ICON Alain Lecomte5 minimalist grammars Lexical items are considered lists of features select* licensors* base licensees* P*I* select: =n, =d, =v, =t, … base: n, d, v, t, … licensors: +k, +wh, … licensees: -k, -wh, …
22/12/2003ICON Alain Lecomte6 Example (Stabler 97) Lexicon: d –k maria =n d –k some n student =d +k =d v speaks =v +K t =t c d –k quechua =n d –k every n language =c +k =d v believes =t c -k
22/12/2003ICON Alain Lecomte7 Merge merge(t1[=c], t2[c]) = [< t1, t2 ] if t1 Lex merge(t1[=c], t2[c]) = [> t2, t1 ] if not. merge(t1[=C], t2[c]) = [< t1(phon(t1)^phon(t2)), t2(phon(e)) ] if t1 Lex merge(t1[C=], t2[c]) = [< t1(phon(t2)^phon(t1)), t2(phon(e)) ] if t1 Lex
22/12/2003ICON Alain Lecomte8 Move Let t* the maximal projection of a head t. Let, for each t1, t2, such that t strictly contains t1 but does not contain t2: t{t1/t2} the result of replacing t1 by t2 inside t, then : for all expression t1[+f] which contains only one maximal subtree t2[-f]* : move(t1[+f]) = [> t2*, t1{ t2[-f]* / }] where is the tree with only an empty node.
22/12/2003ICON Alain Lecomte9 with weak and strong features move(t1[+F]) = [> t2*, t1{ t2[-f]* / }] move(t1[+f]) = [> t2(phon(e))*, t1{ t2[-f]* / t2’* }] where t2’ is t2* from which all the non phonetic features have been suppressed.
22/12/2003ICON Alain Lecomte10 example see : =d +acc =d v /see/ a : =n d –case /a/ movie : n /movie/
22/12/2003ICON Alain Lecomte11 =n d –k every n language Merge
22/12/2003ICON Alain Lecomte12 d –k every language <
22/12/2003ICON Alain Lecomte13 d –k every language < =d +k =d v speaks
22/12/2003ICON Alain Lecomte14 –k every language < +k =d v speaks <
22/12/2003ICON Alain Lecomte15 –k every language < +k =d v speaks < Move
22/12/2003ICON Alain Lecomte16 –k every language < +k =d v speaks < Move –k every language <
22/12/2003ICON Alain Lecomte17 every language < =d v speaks < Move >
22/12/2003ICON Alain Lecomte18 [e /] : x :A/B y : B , xy : A [e \] : y : B x :B\A , yx : A [i ] : x : A y : B , (x, y) : A B [e ] : w : A B , x : A, y : B, ’ z : C , , ’ let(x, y) = ( 1(w), 2(w)) in z : C
22/12/2003ICON Alain Lecomte19 condition on proofs Selected proofs are such that: hypotheses are discharged in the order they are introduced (first in, first out) This translates the short movement constraint (and improves parsing)
22/12/2003ICON Alain Lecomte20 Categorial version see : /see/ : (acc\v) /d a : /a/ : (case d)/n movie : /movie/ : n
22/12/2003ICON Alain Lecomte21 proof /see/ : (acc\v)/d x :d x :d /a/ : (cas d)/n /movie/ : n y : acc y : acc x : d /see/ x : acc \ v /a movie/ : (cas d)y : acc, x : d y /see/ x : v 1(/a movie/) /see/ 2(/a movie/) : v
22/12/2003ICON Alain Lecomte22 Definition : merge = [e \] or [e /] and move = [e ], where / and \ are the residuates of the commutative product , simply labelled differently from each other with regards to the phonetic features that they combine.
22/12/2003ICON Alain Lecomte23 lexicon what : /what/ : (wh (cas d))/n book : /book/ : n : ( wh\cp)/ip you : /you/ : nom d read : /read/ : ( nom\ip)/vp (d\(acc\vp))/ d (abbreviated in I VP)
22/12/2003ICON Alain Lecomte24 deduction U : (d\(acc\vp))/ d x : d(1) y : dU x : d\(acc\vp)(2) z :cas yU x : acc\vp(3) u : cas dz yU x : vp(4) V :( nom\ip)/vpyU u : vp(5) /read/ : I VPVyU u : : nom\ip(6) /read/y u : nom\ip(7) and then : z’ :cas/read/ y u : nom\ip(8) /you/ : nom d z’/lis/ y u : ip(9) : ( wh\cp)/ip/you read/ u : ip(10) u’ :wh /you read/ u : wh\cp(11) /what book/ : wh (cas d) u’/you read/ u : cp (12) /what book you read/ : cp
22/12/2003ICON Alain Lecomte25 parameters khyerang : /khyerang/ : nom d khapar : /khapar/ : wh cas d thrung : /thrung/ : (d\( obl\vp))/d pare: /pare/ : (ip\(cp/wh)) vp\( nom\ip) compared with: you: /you/ : nom d where: /where/ : wh (cas d) born: /born/ : (d\(obl\vp))/ d were: /were/ : ( wh\cp)/ip ( nom\ip)/vp
22/12/2003ICON Alain Lecomte26 deduction /thrung/ : (d\( obl\vp))/d x : d y: d /thrung/x : d\( obl\vp) z : casey/thrung/x : obl\vp u : case d zy/thrung/x : vp uy/thrung/ : vp U : vp\( nom\ip) z’: case uy/thrung/U: nom\ip /khyerang/ : nom d z’ uy/thrung/U: ip /khyerang/ u/throng/U: ipV: (ip\(cp/wh)) /pare/: C I/khyerang/’ u/thrung/U V: cp/wh /khyerang/ u/throng pare/: cp/wh v: wh /khapar/: wh cas d /khyerang/ u/throng pare/v: cp /khyerang khapar throng pare/: cp
22/12/2003ICON Alain Lecomte27 Conclusion A theoretical goal : in what extent the syntactic system of language is a process of resource consumption, A practical goal : in what extent such theories can be logically implementable in logical frameworks (Coq…)