A Computational Approach to Minimalism Alain LECOMTE INRIA-FUTURS (team SIGNES) & CLIPS-IMAG (Grenoble)

Slides:



Advertisements
Similar presentations
But… Why not to have a syntax built on the same principles as those of semantic composition?
Advertisements

Approches formelles en syntaxe et sémantique Alain Lecomte UMR 7023 Structures Formelles de la Langue.
Computational language: week 10 Lexical Knowledge Representation concluded Syntax-based computational language Sentence structure: syntax Context free.
 Christel Kemke 2007/08 COMP 4060 Natural Language Processing Feature Structures and Unification.
Anders Holmberg CRiLLS.  The grammar of a language L: The set of categories, rules, and principles which relate sound to meaning in L  Speech sound.
May 2006CLINT-LN Parsing1 Computational Linguistics Introduction Approaches to Parsing.
Week 3b. Merge, feature checking CAS LX 522 Syntax I.
FORMAL LANGUAGES, AUTOMATA, AND COMPUTABILITY
Chapter Chapter Summary Languages and Grammars Finite-State Machines with Output Finite-State Machines with No Output Language Recognition Turing.
ICE1341 Programming Languages Spring 2005 Lecture #5 Lecture #5 In-Young Ko iko.AT. icu.ac.kr iko.AT. icu.ac.kr Information and Communications University.
ICE1341 Programming Languages Spring 2005 Lecture #4 Lecture #4 In-Young Ko iko.AT. icu.ac.kr iko.AT. icu.ac.kr Information and Communications University.
CSCI 2670 Introduction to Theory of Computing September 15, 2004.
Natural Language Processing - Feature Structures - Feature Structures and Unification.
NLP and Speech Course Review. Morphological Analyzer Lexicon Part-of-Speech (POS) Tagging Grammar Rules Parser thethe – determiner Det NP → Det.
Minimalist Parsing Scott Drellishak CompLing Lab Meeting 2/1/2006.
LEXICALIZATION AND CATEGORIAL GRAMMARS: ARAVIND K. JOSHI A STORY BAR-HILLEL MIGHT HAVE LIKED UNIVERSITY OF PENNSYLVANIA PHILADELPHIA, PA USA June.
LING 388 Language and Computers Take-Home Final Examination 12/9/03 Sandiway FONG.
Local Parallel Rewriting : Theory and Applications * Giorgio Satta University of Padua * Joint work with : D. Melamed, O. Rambow, B. Wellington.
The Implicit Mapping into Feature Space. In order to learn non-linear relations with a linear machine, we need to select a set of non- linear features.
 2003 CSLI Publications Ling 566 Oct 16, 2007 How the Grammar Works.
The Query Compiler 16.1 Parsing and Preprocessing Meghna Jain(205) Dr. T. Y. Lin.
1 Introduction: syntax and semantics Syntax: a formal description of the structure of programs in a given language. Semantics: a formal description of.
Chapter 3: Formal Translation Models
Computational Grammars Azadeh Maghsoodi. History Before First 20s 20s World War II Last 1950s Nowadays.
Semantics and Lexicology Generativist semantics. From structuralist semantics Semantic features, components.
Probabilistic Parsing Ling 571 Fei Xia Week 5: 10/25-10/27/05.
Context Free Grammars Reading: Chap 12-13, Jurafsky & Martin This slide set was adapted from J. Martin, U. Colorado Instructor: Paul Tarau, based on Rada.
Lecture 21: Languages and Grammars. Natural Language vs. Formal Language.
Syntax & Semantic Introduction Organization of Language Description Abstract Syntax Formal Syntax The Way of Writing Grammars Formal Semantic.
Introduction Syntax: form of a sentence (is it valid) Semantics: meaning of a sentence Valid: the frog writes neatly Invalid: swims quickly mathematics.
Lecture 12: 22/6/1435 Natural language processing Lecturer/ Kawther Abas 363CS – Artificial Intelligence.
DIPLOMA THESIS Peter Černo Clearing Restarting Automata Supervised by RNDr. František Mráz, CSc.
Tree-adjoining grammar (TAG) is a grammar formalism defined by Aravind Joshi and introduced in Tree-adjoining grammars are somewhat similar to context-free.
Winter 2007SEG2101 Chapter 71 Chapter 7 Introduction to Languages and Compiler.
THE BIG PICTURE Basic Assumptions Linguistics is the empirical science that studies language (or linguistic behavior) Linguistics proposes theories (models)
Syntax Analysis The recognition problem: given a grammar G and a string w, is w  L(G)? The parsing problem: if G is a grammar and w  L(G), how can w.
1 Chapter 3 Describing Syntax and Semantics. 3.1 Introduction Providing a concise yet understandable description of a programming language is difficult.
Grammars CPSC 5135.
PART I: overview material
May 2006CLINT-LN Parsing1 Computational Linguistics Introduction Parsing with Context Free Grammars.
TextBook Concepts of Programming Languages, Robert W. Sebesta, (10th edition), Addison-Wesley Publishing Company CSCI18 - Concepts of Programming languages.
Copyright © by Curt Hill Grammar Types The Chomsky Hierarchy BNF and Derivation Trees.
7. Parsing in functional unification grammar Han gi-deuc.
1 Introduction to Computational Linguistics Eleni Miltsakaki AUTH Fall 2005-Lecture 4.
What’s in a translation rule? Paper by Galley, Hopkins, Knight & Marcu Presentation By: Behrang Mohit.
Basic Parsing Algorithms: Earley Parser and Left Corner Parsing
The Minimalist Program
© 2005 Hans Uszkoreit FLST WS 05/06 FLST Grammars and Parsing Hans Uszkoreit.
1Computer Sciences Department. Book: INTRODUCTION TO THE THEORY OF COMPUTATION, SECOND EDITION, by: MICHAEL SIPSER Reference 3Computer Sciences Department.
Introduction Finite Automata accept all regular languages and only regular languages Even very simple languages are non regular (  = {a,b}): - {a n b.
Programming Languages and Design Lecture 2 Syntax Specifications of Programming Languages Instructor: Li Ma Department of Computer Science Texas Southern.
Transparency No. 1 Formal Language and Automata Theory Homework 5.
Principles and Parameters (II) Rajat Kumar Mohanty Department of Computer Science and Engineering Indian Institute of Technology Bombay.
Compiler Construction Lecture Five: Parsing - Part Two CSC 2103: Compiler Construction Lecture Five: Parsing - Part Two Joyce Nakatumba-Nabende 1.
Organization of Programming Languages Meeting 3 January 15, 2016.
Natural Language Processing : Probabilistic Context Free Grammars Updated 8/07.
LECTURE 10 Semantic Analysis. REVIEW So far, we’ve covered the following: Compilation methods: compilation vs. interpretation. The overall compilation.
Last Chapter Review Source code characters combination lexemes tokens pattern Non-Formalization Description Formalization Description Regular Expression.
Modeling Arithmetic, Computation, and Languages Mathematical Structures for Computer Science Chapter 8 Copyright © 2006 W.H. Freeman & Co.MSCS SlidesAlgebraic.
Week 3b. Merge, feature checking
Propositional Calculus: Boolean Functions and Expressions
Compiler Lecture 1 CS510.
Introduction to Automata Theory
Cirquent calculus Episode 15 About cirquent calculus in general
Regular Grammar.
Compilers Principles, Techniques, & Tools Taught by Jing Zhang
Ling 566 Oct 14, 2008 How the Grammar Works.
Alain Lecomte INRIA-FUTURS (team SIGNES) & CLIPS-IMAG (Grenoble)
Compilers Principles, Techniques, & Tools Taught by Jing Zhang
Principles and Parameters (I)
Presentation transcript:

A Computational Approach to Minimalism Alain LECOMTE INRIA-FUTURS (team SIGNES) & CLIPS-IMAG (Grenoble)

22/12/2003ICON Alain Lecomte2 minimalism the current trend in Generative Syntax (Chomsky, 1995, 1998, 2001) Minimalist grammars : Stabler, 1997, 1999, 2001 etc. Categorial grammars : Morrill, 1995, Moortgat, 1997, Lambek, 1958, 1988 etc. CG and MG : Lecomte and Retoré, 1999, 2001, 2002 etc.

22/12/2003ICON Alain Lecomte3 Minimalism and Formal Grammars Several attempts to formalise « minimalist principles »: Stabler, 1997, 1999, 2000, 2001: - « minimalist grammars » (MG) Weak equivalence with: - Multiple Context-Free Grammars (Seki et al. Harkema) - Linear Context-Free Rewriting Systems (Michaelis)

22/12/2003ICON Alain Lecomte4 Results from formal grammars Weak equivalence with: - Multiple Context-Free Grammars (Seki et al. Harkema) - Linear Context-Free Rewriting Systems (Michaelis) Mildly context-sensitivity Equivalence with multi-component TAGs (Weir, Rambow, Vijay-Shankar) Polynomiality of recognition

22/12/2003ICON Alain Lecomte5 minimalist grammars Lexical items are considered lists of features select* licensors* base licensees* P*I* select: =n, =d, =v, =t, … base: n, d, v, t, … licensors: +k, +wh, … licensees: -k, -wh, …

22/12/2003ICON Alain Lecomte6 Example (Stabler 97) Lexicon: d –k maria =n d –k some n student =d +k =d v speaks =v +K t =t c d –k quechua =n d –k every n language =c +k =d v believes =t c -k

22/12/2003ICON Alain Lecomte7 Merge merge(t1[=c], t2[c]) = [< t1, t2 ] if t1  Lex merge(t1[=c], t2[c]) = [> t2, t1 ] if not. merge(t1[=C], t2[c]) = [< t1(phon(t1)^phon(t2)), t2(phon(e)) ] if t1  Lex merge(t1[C=], t2[c]) = [< t1(phon(t2)^phon(t1)), t2(phon(e)) ] if t1  Lex

22/12/2003ICON Alain Lecomte8 Move Let t* the maximal projection of a head t. Let, for each t1, t2, such that t strictly contains t1 but does not contain t2: t{t1/t2} the result of replacing t1 by t2 inside t, then : for all expression t1[+f] which contains only one maximal subtree t2[-f]* : move(t1[+f]) = [> t2*, t1{ t2[-f]* / }] where is the tree with only an empty node.

22/12/2003ICON Alain Lecomte9 with weak and strong features move(t1[+F]) = [> t2*, t1{ t2[-f]* / }] move(t1[+f]) = [> t2(phon(e))*, t1{ t2[-f]* / t2’* }] where t2’ is t2* from which all the non phonetic features have been suppressed.

22/12/2003ICON Alain Lecomte10 example see : =d +acc =d v /see/ a : =n d –case /a/ movie : n /movie/

22/12/2003ICON Alain Lecomte11 =n d –k every n language Merge

22/12/2003ICON Alain Lecomte12 d –k every language <

22/12/2003ICON Alain Lecomte13 d –k every language < =d +k =d v speaks

22/12/2003ICON Alain Lecomte14 –k every language < +k =d v speaks <

22/12/2003ICON Alain Lecomte15 –k every language < +k =d v speaks < Move

22/12/2003ICON Alain Lecomte16 –k every language < +k =d v speaks < Move –k every language <

22/12/2003ICON Alain Lecomte17 every language < =d v speaks < Move >

22/12/2003ICON Alain Lecomte18 [e /] :  x :A/B   y : B ,  xy : A [e \] :   y : B  x :B\A ,  yx : A [i  ] :  x : A   y : B ,  (x, y) : A  B [e  ] :  w : A  B , x : A, y : B,  ’  z : C , ,  ’  let(x, y) = (  1(w),  2(w)) in z : C

22/12/2003ICON Alain Lecomte19 condition on proofs Selected proofs are such that: hypotheses are discharged in the order they are introduced (first in, first out) This translates the short movement constraint (and improves parsing)

22/12/2003ICON Alain Lecomte20 Categorial version see :  /see/ : (acc\v) /d a :  /a/ : (case  d)/n movie :  /movie/ : n

22/12/2003ICON Alain Lecomte21 proof  /see/ : (acc\v)/d x :d  x :d  /a/ : (cas  d)/n  /movie/ : n y : acc  y : acc x : d  /see/ x : acc \ v  /a movie/ : (cas  d)y : acc, x : d  y /see/ x : v   1(/a movie/) /see/  2(/a movie/) : v

22/12/2003ICON Alain Lecomte22 Definition : merge = [e \] or [e /] and move = [e  ], where / and \ are the residuates of the commutative product , simply labelled differently from each other with regards to the phonetic features that they combine.

22/12/2003ICON Alain Lecomte23 lexicon what :  /what/ : (wh   (cas  d))/n book :  /book/ : n  : (  wh\cp)/ip  you :  /you/ : nom  d read :  /read/ :  (  nom\ip)/vp  (d\(acc\vp))/  d (abbreviated in  I  VP)

22/12/2003ICON Alain Lecomte24 deduction U : (d\(acc\vp))/  d x : d(1) y : dU  x : d\(acc\vp)(2) z :cas yU  x : acc\vp(3) u : cas  dz yU  x : vp(4) V :(  nom\ip)/vpyU  u : vp(5) /read/ :  I  VPVyU  u : :  nom\ip(6) /read/y  u :  nom\ip(7) and then : z’ :cas/read/ y  u :  nom\ip(8) /you/ : nom  d  z’/lis/ y  u : ip(9)  : (  wh\cp)/ip/you read/  u : ip(10) u’ :wh /you read/  u :  wh\cp(11) /what book/ : wh   (cas  d)  u’/you read/  u : cp (12) /what book you read/ : cp

22/12/2003ICON Alain Lecomte25 parameters khyerang :  /khyerang/ : nom  d khapar :  /khapar/ : wh  cas  d thrung :  /thrung/ : (d\(  obl\vp))/d pare:  /pare/ :  (ip\(cp/wh))  vp\(  nom\ip) compared with: you:  /you/ : nom  d where:  /where/ : wh   (cas  d) born:  /born/ : (d\(obl\vp))/  d were:  /were/ : (  wh\cp)/ip   (  nom\ip)/vp

22/12/2003ICON Alain Lecomte26 deduction /thrung/ : (d\(  obl\vp))/d x : d y: d /thrung/x : d\(  obl\vp) z : casey/thrung/x :  obl\vp u : case  d  zy/thrung/x : vp  uy/thrung/ : vp U : vp\(  nom\ip) z’: case  uy/thrung/U:  nom\ip /khyerang/ : nom  d  z’  uy/thrung/U: ip /khyerang/  u/throng/U: ipV:  (ip\(cp/wh)) /pare/: C  I/khyerang/’  u/thrung/U  V: cp/wh /khyerang/  u/throng pare/: cp/wh v: wh /khapar/: wh  cas  d /khyerang/  u/throng pare/v: cp /khyerang khapar throng pare/: cp

22/12/2003ICON Alain Lecomte27 Conclusion A theoretical goal : in what extent the syntactic system of language is a process of resource consumption, A practical goal : in what extent such theories can be logically implementable in logical frameworks (Coq…)